This report was prepared by Black & Veatch in association with Georgia Water Resources Institute for the ACF Stakeholders, Inc. (ACFS) and has been presented to and accepted by the Technical Oversight and Coordination Work Group (TOCWG) for the specific purpose identified in the introduction to this document for use in developing a sustainable water management plan. This report addresses complex issues on which individual stakeholders may disagree. The statements, findings, conclusions, and recommendations contained in this report are those of the author(s) alone. Acceptance of this report shall not be interpreted as an approval or endorsement by the ACFS, or any individual ACFS member, of any of the statements, findings, conclusions, and recommendations it contains. Working together to share a common resource. # Apalachicola-Chattahoochee-Flint Stakeholders # Sustainable Water Management Plan: Metric Development Technical Memorandum JUNE 26, 2013 In association with ### **Table of Contents** | Introduction | 1 | |--|---| | Approach for Metric Development | 3 | | Step 1 - Identification | 3 | | Step 2 - Evaluation | 5 | | Step 3 - Consensus | 6 | | Basin Caucus Meetings | 6 | | Middle/Lower Chattahoochee Caucus Meetings | 6 | | Upper Chattahoochee Caucus Meetings | 7 | | Apalachicola Caucus Meetings | 7 | | Flint Caucus Meetings | 8 | #### **Appendix 1 - Table Summary of Performance Metrics** - Table Summary of Performance Metrics. This summary compiled development of performance metrics. - Upper Chattahoochee Performance Metrics # Appendix 2 - Model Output Examples. Used For Illustration Purposes during Initial Metric Development - Lake Lanier Sample Output. Example Model Output - W. George Sample Output. Example Model Output - Peachtree Creek Alternative Comparison. Example Model Output. - Montezuma Alternative Comparison. Example Model Output. - USACE RIOP Summary - Lake Lanier Action Zones and Actual 2012 Elevation. Example Model Input/Output - West Point Action Zones and Actual 2012 Elevations. Example Model Input/Output - W.F. George Action Zones and Actual 2012 Elevations. Example Model Input/Output - Jim Woodruff Actual & Projected 2012 Elevations. Example Model Output - Jim Woodruff Outflow Based on Basin Inflow December-February: Winter Period. Example Model Input - Jim Woodruff Outflow Based on Basin Inflow June-November: Non-Spawning Period. Example Model Input - Jim Woodruff Outflow Based on Basin Inflow March-May: Spawning Period. Example Model Input #### **Appendix 3 - Basin Caucus Meeting Summaries** ### **Introduction and Purpose** The purpose of this memorandum was to provide background information for ACFS members to enable informed input about metric development for the sub-basin Caucus Meetings and to document the metric development process. The metrics developed are reflected in the table summary in Appendix 1 and will be used in the SWMP process to assess the extent to which proposed water management alternatives may result in improved conditions for stakeholders in the ACF Basin. Use of these metrics in assessing water management alternatives does not mean stakeholders agree with each and all of the metrics proposed, but rather that the set of metrics taken together is what the ACFS is using to reflect stakeholder interests. This process is defined as Task 2 in the overall schedule as shown on Figure 1. Figure 1 Overall Sustainable Water Management Plan Schedule The relevant milestones as they relate to this Task include the following: - Atkins submitted Data and Science Needs deliverable to the TOCWG on June 28, 2012. - Sub-basin caucus meetings on metric development were held in July and August. - Black & Veatch submitted revised Task 2 memorandum based on TOCWG input and Governing Board input on September 21, 2012. - Atkins submitted final environmental inundation and flows deliverable to the TOCWG and caucuses. - Sub-basin caucus meetings were held in fall 2012 to discuss performance metrics and water management alternatives. This included discussions on how environmental flows will be integrated into the modeling. - Black & Veatch provides a revised Task 2 memorandum. - Governing Board approves Task 2 memorandum. This approval will be a consensus decision regarding whether the breadth of stakeholder interests are represented in the list of performance metrics. This does not necessarily mean consensus agreement on the values of the performance metrics. Consensus development related to tradeoffs among performance metrics will come later when model results can inform the discussions. The purpose of developing metrics is to measure the effectiveness of management alternatives. In general, metrics are a way to describe and compare what is important to ACFS members. For example, some members may be concerned with navigation and how often the river could support navigation. This, in essence, could be a metric at a specific point in the river. If this metric is chosen, this would allow model output to be formatted so differences between model scenarios could be clearly understood. Some helpful definitions of terms used in the memorandum include the following: **Metrics** are measures for evaluating the performance of a system. These can be quantitative or qualitative. **Preferences or Desired Operating Conditions** are numeric, quantitative inputs to the model setting a desired physical condition at a specific geographic location. Rules can be programmed into the model to simulate management of the system to attempt to meet these preferences. The model may not always meet model preferences, for example, during times of drought. Model output will document whether these conditions have been met. **Performance criteria** are a qualitative or statistically based measures at a specific geographic location. For example, a flow of 15,000 cfs or greater at Columbia node 95% of the time or greater between January and April could be a performance criteria. How well the system meets performance criteria for a particular modeled condition is determined by reviewing model output. **Model output** refers to the predicted lake levels and flows at model nodes under specific time/inflow conditions. This information may be expressed in various graphical and tabular formats for comparison between modeled scenarios. ### **Approach for Metric Development** Metrics are to be developed by applying a three-step process presented in Figure 2. Figure 2 Approach to Metric Development This process encourages a common level of understanding by allowing input and shared understanding throughout the process. Input includes the following: - Individual Members: Able to submit metrics. - Caucus Members: Educate individual members and encourage identification and submission of metrics. - TOCWG: Able to submit metrics, consider caucus input, and decide on alternatives to model. - Consultant: Provided process memo, sample metrics, and followed up with committee to clarify metrics. #### **STEP 1 - IDENTIFICATION** The proposed river and reservoir model (ACF-DSS model) is the primary modeling tool that will be used in the plan. It simulates the river and reservoir response under different hydrologic, development, and management scenarios. Its overriding purpose is to objectively assess the tradeoffs associated with various water development, sharing, and management strategies that may interest the ACF Basin stakeholders individually or as an interdependent community. Tradeoffs exist within and across sectors. Reservoir simulation requires the specification of regulation rules. Traditional reservoir regulation rules (such as those implemented in the USACE ResSim model) determine reservoir release as a function of reservoir elevation, inflow, water and power demand, environmental flow requirements, time of the year, or some combination of these parameters. Specific locations, called nodes, where a metric may be evaluated have already been determined as part of the Task 1 Work Plan memorandum. The following nodes are included in the ACF-DSS model: - Chattahoochee - Buford Gage - Whitesburg - West Point Dam - Columbus - W. F. George Dam - Columbia - Chattahoochee - Flint - Griffin - Carsonville - Montezuma - Albany - Bainbridge - Apalachicola - Chattahoochee - Blountstown - Sumatra In addition to node locations, each metric is to be identified by a resource category. ACFS's previously defined stakeholder interests will be used as the resource categories for each metric. These include the following: - 1. Navigation - 2. Recreation - Water Quality - 4. Water Supply - 5. Farm and Urban Agriculture - 6. Industry and Manufacturing - 7. Seafood Industry - 8. Hydro Power - 9. Thermal Power - 10. Local government - 11. Environment and Conservation - 12. Business and/or Economic Development - 13. Historic and Cultural - 14. Urban Agriculture ACFS members were able to identify metrics by each basin caucus. Individual sub-basin Caucus Meetings were held to identify how interests might be translated into metrics. A draft summary of performance metrics was compiled utilizing the existing development of performance metrics done by the ACFS Data-Needs-Sustainability Work Group in 2010. As preparation for the meeting, ACFS members were encouraged to verify if the metrics in the table reflect their interests. Also, ACFS members were encouraged to generate a list of their concerns and any supplemental studies which may be helpful for the caucus. The Table Summary of Performance Metrics (Appendix 1) was updated to include the input from the caucus meetings for subsequent use on the project. #### **STEP 2 – EVALUATION** Black & Veatch assisted the TOCWG in identifying whether metrics could be evaluated in a quantitative or qualitative fashion, or by the modeling performed for this project at all. A metric will be considered quantitatively if: a) direct evaluation is possible using model output or b) an
indicator of the attribute of interest at the specified location can be developed using output data. If a particular attribute of interest cannot be represented either directly in the model or through the development of an indicator, the potential performance of an attribute under various future scenarios will be discussed qualitatively. For example, instantaneous or hourly time step metrics, while important to specific stakeholders will not be addressed in the modeling for the SWMP. Qualitative evaluations will vary in detail depending on the level of information available. Using this information and other information available from published reports and/or articles, the approach for evaluating each qualitative metric and the level to which a qualitative evaluation can be made was discussed with the TOCWG. Additional analysis of metrics other than flow, depth, or related water quantity is not included in the proposed work plan. #### **Methods for Quantifying Metrics** If a metric is identified as quantitative, the next step is to select a specific method for quantifying that metric. Two methods for quantifying metrics have been identified: 1. **Reference Value Method:** In many cases, comparing the attribute of interest at a particular location to a reference value (that may also be specific to the location of interest) informs the assessment of system reliability. The reference value then defines the method for quantifying the metric. Because the Study is addressing a wide range of basin resources in the ACF, no single method for quantifying reference values is applicable to all metrics. Some metrics may be quantified based on physical constraints in the river system. For example, the elevation of a facility's water intake represents a physical constraint and provides the reference value that can be used to quantify a metric in the Water Supply resource category. Other metrics may be quantified based on specific values that are prescribed in contracts and agreements between resource management agencies, Environmental Impact Statement (EIS), Biological Opinions issued by FWS, and other regulatory actions. For example, recommendations of flows for endangered species (as defined in a Biological Opinion) provide reference values that can be used to quantify metrics in the Environment and Conservation resource category. Additionally, some metrics may be quantified using an estimated need for a water-dependent resource. Estimated needs typically are developed by interested stakeholders or are defined within published reports and articles. For example, the projected demand for municipal, industrial, and agricultural water at a specific location can be used to quantify metrics in the Water Supply resource category. 2. **Relative Comparison:** In some cases, an informative reference value may not exist for some attributes of interest. In such cases, the attribute of interest is strictly compared across the range of future water supply and demand scenarios. For example, metrics related to flood control releases or spills to manage reservoir levels do not have an associated reference value. In this case, metrics related to flood control releases or spills could be quantified through a comparative analysis between future scenarios. #### **STEP 3 - CONSENSUS** After the metrics were identified, a table summary of performance metrics was compiled and used as the primary tool to develop a shared understanding among stakeholders and ultimately consensus of the metrics. An updated version of the table summary is included at the end of this memorandum. This summary table included example modeling output formats to increase stakeholder understanding about how results from iterative modeling runs under various scenarios will be compared against stakeholder-desired metrics. It is important to note that consensus on metrics is defined as the occurrence when all interests are represented in the list of metrics to be used. Consensus does not mean agreement on particular performance criteria. Consensus building on the metrics will likely progress iteratively with general agreement on some metrics, while others may require stakeholders to review in more detail. ### **Basin Caucus Meetings** Four individual basin caucus meetings were held in July and August as input gathering sessions on performance metrics. The purpose of the meetings was to encourage discussion about the performance metrics table, identify informational needs, and evaluate individual metrics to ensure they are representative of interests in the caucus and ACFS. Four additional basin caucus meetings were held in November 2012 as additional input gathering sessions on performance metrics and to discuss water management alternatives. The following sections provide an overview of these meetings. Individual meeting summaries with more detail are included in Appendix 3. ### MIDDLE/LOWER CHATTAHOOCHEE CAUCUS MEETINGS A Middle/Lower Chattahoochee Caucus Meeting was held on July 19, 2012, at the offices of LaGrange Troup Country Chamber of Commerce in LaGrange, Georgia. Another caucus meeting was held on November 13, at Columbus Water Works in Columbus, Georgia. At both meetings, the Performance Criteria Identification Summary was used as a guide for discussion and input. After the second meeting, most metrics were established, with a few information follow up items: - The caucus learned that the modeling done for the SWMP will not be at an hourly resolution, but answers regarding weekly potential hydropower generation can be calculated. A hydropower stakeholder conference call was held February 1; this group will provide more information at a later date. - For the Georgia Power dams between West Point and Columbus, it was noted while there are FERC permit flow requirements, these requirements are contingent on adequate inflow; therefore, the modeling essentially shows inflow =outflow. #### **UPPER CHATTAHOOCHEE CAUCUS MEETINGS** An Upper Chattahoochee Basin Caucus Meeting was held on July 27, 2012, at the offices of Cobb County-Marietta Water Authority in Marietta, Georgia. Another caucus meeting was held on November 16, 2012, at Gwinnett County DWR offices in Lawrenceville, Georgia. At both meetings, members used the Performance Criteria Identification Summary as a guide for discussion and input. After the second meeting, most metrics were established, with a few information follow-up items: - The group would like recreation input from the National Park Service. Black & Veatch has followed up with the NPS, but no additional information has been provided to date. - The caucus learned that the modeling done for the SWMP will not be at an hourly resolution, but answers regarding weekly potential hydropower generation can be calculated. A hydropower stakeholder conference call was held February 1; this group will provide more information at a later date. Members provided example performance metric outputs, which are reference in the performance criteria summary and are included in Appendix 1. #### **APALACHICOLA CAUCUS MEETINGS** An Apalachicola Caucus Meeting was held on August 8, 2012, at the North Florida Research and Education Center. A second meeting was held at Callahan Restaurant in Blountstown, Florida on November 6, 2012. At both meetings, members used the Performance Criteria Identification Summary as a guide for discussion and input. After the second meeting, most metrics were established, with a few information follow-up items: - Members felt that the percentage of time tributaries "disconnect" from the river is important for water quality. This will not be provided by the modeling for the SWMP; this could be a recommendation in the Sustainable Water Management Plan for future research. - Information of shellfish productivity and acreage of healthy oyster bars is needed. This will not be provided by the modeling for the SWMP; this could be a recommendation in the Sustainable Water Management Plan for future research. - Members recognized that the Instream Flow Assessment by Atkins may provide additional metrics. How to utilize this information will be discussed further. - Information on areal coverage of freshwater sea grass and maintenance of the 0.5 ppt isohaline is needed. This will not be provided by the modeling for the SWMP; this could be a recommendation in the Sustainable Water Management Plan for future research. - Members were concerned about the elevation of the City of Port St. Joe water supply canal elevation; other metrics are believed to be more stringent, but the information will be sought by members. - Members recognized that river flow, timing, durations, and variability impact the health of the bay, and information about this effect is desired. Information on river flow under various conditions using the 1939-2008 period of record conditions will be provided by the modeling for the SWMP; however, interpretation of impact on the estuary could be a recommendation in the Sustainable Water Management Plan for future research. - Information on the Plant Sholz intake elevation was obtained and is in the performance metric table; however, press releases subsequently noted that Plant Sholz is slated for closing by July 2015. Currently the Bay Assessment Ad-hoc committee is still reviewing possible metrics. #### FLINT CAUCUS MEETINGS A Flint Caucus Meeting was held on August 9, 2012, at Covey Rise near Camilla, Georgia. A second meeting was held at the Riverfront Resource Center in Albany, Georgia on November 5. At both meetings, members used the Performance Criteria Identification Summary as a guide for discussion and input. After the second meeting, most metrics were established, with a few information follow-up items: - Members felt more information was needed for recreation on Lake Blackshear and Lake Chehaw; however, as these lakes are operated to maintain level (inflow=outflow), recreation interests are maintained. - Members noted that there was
no wasteload allocation flow information for the Newton node; this is an information need for the future. - More information is needed regarding the FERC permits for Lake Chehaw and Blackshear. Georgia Power provided information that the Flint River hydro project below Chehaw has no FERC requirements, but the project is run of the river, with inflow equal to outflow, maintaining elevation 181.8, +-0.5 feet. There is also a 10 cfs flow for Muckafoonee Creek, which is accomplished through a pipe and valve for releasing from June through August. - More information is needed on Plant Mitchell water needs. Georgia Power provided information that Plant Mitchell has a 232 mgd withdrawal permit that is current through 2020. There are currently no flow permit requirements; the plant uses once through cooling. Plant Mitchell is planned for conversion to utilize biomass fuels, but this is currently on hold. # Appendix 1 **Table Summary of Performance Metrics** # **Performance Metrics Identification Overall Summary** ACF Stakeholders Last Updated : June 26, 2013 | Caucus | Node / Gage | | Metric Mari | ggation Recites | nior water | Onsited Mater | Supply Farm Agi | indus. | try & turing seatood | Industry | Power | Local C | Owernment Environment & | Business | toric prent
Jevelophent
Jevelophent | & Cultural Urban | Agriculture Notes | |------------|---|----------------|----------------|---|---|--|-------------------------------------|---|----------------------|---|----------------|--|---|---|---|--------------------------------------|---| | | Lanier | Level | Not Applicable | Percent of Time Lanier Level is <1061, UC Caucus Metric 10 - Percent of Weeks March through Nov < Corps Identified Recreation Impact Levels | Concerns with
lake level and
water quality;
generally better
water quality with
higher lake levels | | No Specific
Criteria Identified | Metrics
Linked to
Water Supply | Not Applicable | Weekly
minimum
MWHr
generation for
each month | Not Applicable | Linked to
Recreation | Percent of time the ramp rate in
Lake Lanier is <1/2 foot per day
April to June | Linked to
Water Supply
and Recreation | Linked to
Recreation | to Water | See Upper Chattahoochee Basin Caucus Meeting July 27, 2012 notes for Performance Metrics example graphs. See attached numeric background information for the Hydro Power metric. | | | Buford Gage | Flow | Not Applicable | Linked to Water
Supply and
Hydropower | GA DNR hatchery desired release = 550 cfs to keep nursery intake covered, DO, temp | UC Basin Caucus
Metric 11 -
Number of Days
with Shortages of
Withdrawals | | Metrics
Linked to
Water Supply | Not Applicable | Weekly
minimum
MWHr
generation for
each month | Not Applicable | Linked to Water
Supply, Water
Quality, and
Recreation | | Linked to
Water Supply
and Recreation | NPS concern is
flooding
inundation,
NWS identified
elevation 924 | Metrics Linked
to Water | | | ttahoochee | Norcross | Flow | Not Applicable | Percent of time >1500 cfs into Bull Sluice Lake (Atlanta Rowing Club); hourly variability is a concern | | UC Basin Caucus
Metric 11 -
Number of Days
with Shortages of
Withdrawals | | Metrics
Linked to
Water Supply | Not Applicable | Not Applicable | Not Applicable | Linked to Water
Supply, Water
Quality, and
Recreation | Percent of time flow meets guidelines in FWS PAL Letter. Also, % of time flow > 6% reduction in flow on a monthly basis for dry years (6% reduction is from UIF_CMA median monthly flows of pre-dam years from IFA Analysis)*** % change from the monthly mean & median UIF (all years) | Linked to | NPS concern is
flooding
inundation,
NWS identified
890 = 11,000
cfs | Metrics Linked | Recreational safety from hourly variations is a concern. | | Upper Cha | Morgan Falls | Level/
Flow | Not Applicable | Percent of time level > elevation 864 (Atlanta Rowing Club Input) | No Specific | UC Basin Caucus
Metric 11 -
Number of Days
with Shortages of
Withdrawals | No Specific | Metrics
Linked to
Water Supply | Not Applicable | No Specific
Criteria
Identified | Not Applicable | Linked to Water
Supply, Water
Quality, and
Recreation | No Specific Criteria Identified | Linked to
Water Supply | 867 = 12,000 | Metrics Linked to Water | Georgia Power operates Morgan Falls between 866 and 858 to reregulate Lanier releases to meet 750 cfs at Peachtree Creek; this is protective of thermal plant needs. | | | Peachtree Creek
(as measured at
USGS Atlanta) | Flow | Not Applicable | % of time flow
between 1000 and
1250 cfs for
recreation (National
Park Service) | 750 cfs or greater throughout the year; releases to meet this flow with current discharge limits generally protective of DO and temperature | Below 750 cfs | No Specific
Criteria Identified | Metrics
Linked to
Water Supply | Not Applicable | Not Applicable | Not Applicable | Linked to Water
Supply, Water
Quality, and
Recreation | No Specific Criteria Identified | Linked to
Water Supply
and Recreation | NPS concern is
flooding
inundation,
NWS identified
764 = 17,600
cfs at Atlanta | Metrics Linked
to Water | 750 cfs is a current RIOP rule in the model************ Potential modeling of different flow rules, changing flow quantity and/or seasonal flow differences was discussed during Upper Chattahoochee Basin Caucus Meeting July 27, 2012 | | | Whitesburg | Flow | Not Applicable | % of time flow >2200 cfs for recreation based on 4 ft depth | average 1000 cfs
or greater, 7-day | % of time daily
average 1000 cfs
or greater, 7-day
average 1350 cfs
or greater | No Numeric
Criteria Identified g | % of time
daily average
1000 cfs or
greater, 7-day
average 1350
cfs or greater | Not Applicable | Not Applicable | Not Applicable | Not Applicable | % of time flow >2200 cfs for recreation based on 4 ft depth | Link to Thermal
Power | No Numeric
Criteria
Identified | No Numeric
Criteria
Identified | Instantaneous minimum of 750 cfs desired; model will not provide information at this resolution | # **Performance Metrics Identification Overall Summary** ACF Stakeholders Last Updated : June 26, 2013 | Caucus | Node / Gage | | Metic Mai | Recreation Rescreet | Makel | Cuality water | Supply Farn Ar | struture Indust | THE SEATOOD | Industry | o Power The trail | Ponet Tocale | Constituent Environment & | Business | donic prent
horic prent
Development
Historic | & Cultural Urban | Agriculture | |---------------|-----------------|-------|--|--|--|---|-----------------------------------|---|-----------------------------------|---|---|---|--|---|---|--------------------------------------|--| | | West Point | Level | Not Applicable | % of time level April-
October is 635 or
above, 632.5 at all
other times | | % of time level April-October is 635 or above, 632.5 at all other times | No Numeric
Criteria Identified | % of time
level April-
October is
635 or above,
632.5 at all
other times | Not Applicable | No Numeric
Criteria
Identified | Not Applicable | Not Applicable | % of time level April-October is 635 or above, 632.5 at all other times | % of time
level
April-October is
635 or above,
632.5 at all
other times | No Numeric
Criteria
Identified | No Numeric
Criteria
Identified | 635 equals full pool. | | | West Point Gage | Flow | Not Applicable | No Numeric Criteria
Identified | No Numeric
Criteria Identified | No Numeric
Criteria Identified | No Numeric
Criteria Identified | No Numeric
Criteria
Identified | Not Applicable | Weekly
minimum
MWHr
generation for
each month | No Numeric Criteria
Identified | No Numeric
Criteria
Identified | Percent of time flow meets
guidelines in FWS PAL Letter | No Numeric
Criteria
Identified | No Numeric
Criteria
Identified | No Numeric
Criteria
Identified | | | chee | Columbus | Flow | Not Applicable | % of time daily
average 1350 cfs or
greater, 7-day
average 1850 cfs or
greater | average 1350 cfs
or greater, 7-day | or greater, 7-day | No Numeric
Criteria Identified | % of time
daily average
1350 cfs or
greater, 7-day
average 1850
cfs or greater | Not Applicable | No Numeric
Criteria
Identified | Not Applicable | % of time daily
average 1350
cfs or greater, 7
day average
1850 cfs or
greater | % of time daily average 1350 cfs or greater, 7-day average 1850 cfs or greater | | No Numeric
Criteria
Identified | No Numeric
Criteria
Identified | Instantaneous minimum of 800 cfs desired; model will not provide information at this resolution. 2000-3000 cfs desired for recreation at Columbus, particularly on weekends when West Point is not operating hydropower. | | er Chattahood | W.F. George | Level | % of time >
187.5 feet,
December
through May | % of time level April-
October is 190 or
above, 187.5 at all
other times | Not Applicable | Not Applicable | No Numeric
Criteria Identified | % of time
level April-
October is
190 or above,
187.5 at all
other times | Not Applicable | Not Applicable | Not Applicable | Not Applicable | % of time level April-October is 190 or above, 187.5 at all other times | % of time level
April-October is
190 or above,
187.5 at all
other times | Historic Chattahoochee and USF archeologist concern over flooding and erosiion of historic sites, % of time level is 190 or above | No Numeric
Criteria
Identified | Historic Chattahoochee and USF archeologist concern over flooding and erosion of historic sites from Phenix City south | | Middle & Low | W.F. George | Flow | Not Applicable | Not Applicable | No Numeric
Criteria Identified | No Numeric
Criteria Identified | No Numeric
Criteria Identified | No Numeric
Criteria
Identified | Not Applicable | Weekly
minimum
MWHr
generation for
each month | No Numeric Criteria
Identified | No Numeric
Criteria
Identified | Meet flow guidelines in FWS PAL
Letter. Also, % of time flow > 6%
reduction in flow on a monthly basis
for dry years (6% reduction is from
UIF_CMA median monthly flows of
pre-dam years from IFA Analysis) | No Numeric
Criteria
Identified | No Numeric
Criteria
Identified | No Numeric
Criteria
Identified | | | Ž | Andrews | Level | % of time >101.9 feet, December through May | No Numeric Criteria
Identified | No Numeric
Criteria Identified | No Numeric
Criteria Identified | No Numeric
Criteria Identified | No Numeric
Criteria
Identified | No Numeric
Criteria Identified | No Numeric
Criteria
Identified | No Numeric Criteria
Identified | No Numeric
Criteria
Identified | No Numeric Criteria Identified | No Numeric
Criteria
Identified | No Numeric
Criteria
Identified | No Numeric
Criteria
Identified | | | | Columbia | Flow | Not Applicable | % of time daily
average 2000 cfs or
greater, 7-Day
average 2000 cfs or
greater | or greater, 7-Day | Not Applicable | No Numeric
Criteria Identified | % of time
daily average
2000 cfs or
greater, 7-
Day average
2000 cfs or
greater | Not Applicable | Not Applicable | % of time daily
average 2000 cfs
or greater, 7-Day
average 2000 cfs
or greater,
elevation >74.5 ft
for Plant Farley | % of time daily
average 2000
cfs or greater, 7
Day average
2000 cfs or
greater | Not Applicable | % of time daily
average 2000
cfs or greater,
7-Day average
2000 cfs or
greater | No Numeric
Criteria
Identified | No Numeric
Criteria
Identified | | | | Woodruff | Level | % of time level
April-October
77.5 or greater,
76.5 at all other
times | % of time level April-
October 77.5 or
greater, 76.5 at all
other times | % of time level
April-October
77.5 or greater,
76.5 at all other
times | % of time level
April-October 77.5
or greater, 76.5 at
all other times | No Numeric
Criteria Identified | % of time
level April-
October 77.5
or greater,
76.5 at all
other times | Not Applicable | Not Applicable | % of time level April
October 77.5 or
greater, 76.5 at all
other times | % of time level
April-October
77.5 or greater,
76.5 at all other
times | Not Applicable | % of time level
April-October
77.5 or greater,
76.5 at all other
times | No Numeric
Criteria
Identified | Criteria | Desired flow contribution 50% from Chattahoochee and Flint basins; % of flow from each basin for each month July through December in the 25% lowest rain years | ### ACF Stakeholders Last Updated : June 26, 2013 | Caucus | Node / Gage | | Medic Mai | gation | nate mater | Cuality Water | Supply Farm Ac | riculture Indus | ry & ruing seafood | Industry | Power | d Power Locale | Overnment Environment & ton | Business | onic ment | & Cultural Jupan | Agriculture Notes | |--------|-------------|------|--------------------------------|---|---|--|--|--|--------------------|---|--|--|---|--|-------------------------|---|--| | | Griffin | Flow | Not Applicable | See note. | % of time flow <18 cfs wasteload allocation flow from GA EPD. See Note. | % of time flow
<60 cfs Griffin Still
Branch permit
minimum flow | No specific
numeric criteria
identified | % of time
above
wasteload
allocation flow
of 18 cfs | Not Applicable | Not Applicable | Not Applicable | Linked to Water
Supply & Water
Quality | I MORE than 311% helow at other | Linked to
Water Supply &
Water Quality | Linked to
Recreation | Water Supply & Water | Clayton County used a 20-year minimum flow of 12.7 mgd per flow records for their recent waste load allocation evaluation into the Flint at Flint River Road in Jonesboro. The Caucus wants to incorporate Lake Horton, Lake Kedron, and Lake Peachtree into the model in the future for more detailed flow information. | | | Carsonville | Flow | Not Applicable | % of time >600 cfs
weekly average
daily flow March
through October | % of time flow <110 cfs wasteload allocation flow from GA EPD. | No specific
numeric criteria
identified | % of time flow
<180 cfs from
permitted ag
withdrawals near
Carsonviile | % of time
above
wasteload
allocation flow
of 110 cfs | Not Applicable | Not Applicable | Not Applicable | Linked to Water
Supply & Water
Quality | | Linked to
Water Supply,
Water Quality,
and Recreation | Linked to
Recreation | Linked to
Water Supply
& Water
Quality | Demonstrate flow variability and low flow duration at node. | | | Montezuma | Flow | Not Applicable | % of time flow is
less than 700 cfs for
boating March
through October | % of time flow
<317 cfs
wasteload
allocation flow
from GA EPD. | No specific
numeric criteria
identified | % of time flow <180 cfs from permitted ag withdrawals near Carsonviile | % of time
above
wasteload
allocation flow
of 317 cfs | Not Applicable | Not Applicable | Not Applicable | Linked to Water
Supply & Water
Quality | I MORE than 311% helow at other | Linked to
Water Supply,
Water Quality,
Recreation,
and Farm
Agriculture | Linked to
Recreation | Linked to
Water Supply
& Water
Quality | One SW ag withdrawal between Carsonville and Montezuma with low flow protection exists. | | Flint | Albany | Flow | Not Applicable | Lake Blackshear
and Lake Chehaw
are operated as run
of the river
which
provides level for
recreation | % of time flow
<1000 cfs for
wasteload
allocation based
on USGS pre-
1974 7Q10 | No specific
numeric criteria
identified | No specific
numeric criteria
identified | % of time
above 1000
cfs | Not Applicable | Lake Blackshear and Lake Chehaw are operated as run of the river; Lake Chehaw operated to maintain elevation 181.8+-0.5 feet; no specific numeric criteria identified | Not Applicable | Linked to Water
Supply & Water | % of time flow is more than 15% below cumulative UIF average daily flow between Feb 15-Jun 15 and more than 30% below at other times***Also, % of time flow > 6% reduction in flow on a monthly basis for dry years (6% reduction is from UIF_CMA median monthly flows of pre-dam years from IFA Analysis)***% of time Flow> monthly 7Q10+30%. Use UIF dataset to calculate the monthly 7Q10 since 1974. | Water Supply & | Linked to
Recreation | Water Supply | Groundwater withdrawals accounted for in model as a surface water withdrawal based on USGS Groundwater/Surface water impact. | | | Newton | Flow | Linked to level
in Woodruff | % of time flow is less than 1000 cfs | Informational
Need: % of time
flow > wasteload
allocation flow | No specific
numeric criteria
identified | No specific
numeric criteria
identified | % of time
above
wasteload
allocation flow | Not Applicable | Not Applicable | Plant Mitchell has a
232 mgd
withdrawal permit
but uses once
through cooling;
protected by other
metrics | Linked to Water
Supply & Water
Quality | % of time flow is more than 15% below cumulative UIF average daily flow between Feb 15-Jun 15 and more than 30% below at other times*** Also, % of time flow > 6% reduction in flow on a monthly basis for dry years (6% reduction is from UIF_CMA median monthly flows of pre-dam years from IFA Analysis)***% of time Flow> monthly 7Q10+30%. Use UIF dataset to calculate the monthly 7Q10 since 1974. | Water Supply & | Linked to
Recreation | Water Supply
& Water | Groundwater withdrawals accounted for in model as a surface water withdrawal based on USGS Groundwater/Surface water impact. ************************************ | | | Bainbridge | Flow | Linked to level | % of time >900 cfs
weekly average
daily flow | % of time flow
<2300 cfs for
wasteload
allocation based
on USGS pre-
1974 7Q10 | No specific
numeric criteria
identified | No specific
numeric criteria
identified | % of time
above 2300
cfs | Not Applicable | Not Applicable | Not Applicable | Linked to Water
Supply & Water | % of time flow is more than 15% below cumulative UIF average daily flow between Feb 15-Jun 15 and more than 30% below at other times *** Also, % of time flow > 6% reduction in flow on a monthly basis for dry years (6% reduction is from UIF_CMA median monthly flows of pre-dam years from IFA Analysis)***% of time Flow> monthly 7Q10+30% . Use UIF dataset to calculate the monthly 7Q10 since 1974. | Linked to
Water Supply & | Linked to
Recreation | Linked to
Water Supply
& Water
Quality | Groundwater withdrawals accounted for in model as a surface water withdrawal based on USGS Groundwater/Surface water impact. | ## **ACF Stakeholders** Last Updated : June 26, 2013 | Caucus | Node / Gage | | Metric Mari | gation Recte | Mater | Cuality Water | ZUPPHY Fairn AC | riciliure Indus | try & turing sealood | Industry Hydr | Power | Power | Zovernnent Environnent & | Business | Social Chrent Historic | & Cultural Urban | A Agriculture Notes | |------------|-------------------------|------|---|---|--|--|--|-----------------------------------|---|--|---|--|--|--|---|-------------------------|--| | | Chattahoochee | Flow | See Note. | % of time > 45' msl level at Chattahoochee Landing by month (16,000 cfs). See Note for recreationa navigation. | tributaries "disconnect" from | | % of time
Blountstown gage
is >7 feet (15,800
cfs) in the month
of February to
flood tupelo trees | Not
Applicable | Linked to Chattahoochee recreation gage criteria; floodplain detritus necessary for organic material for shellfish productivity | % of time <77'
level at
Woodruff | % of Time >5,000 cfs, % of time elevation is >38 ft MSL for Plant Scholz; note Plant Scholz scheduled for closing July 2015 | % of time <77'
level at
Woodruff | Comparison of pre & post dam flow. Also, % of time flow > 6% reduction in flow on a monthly basis for dry years (6% reduction is from UIF_CMA median monthly flows of pre-dam years from IFA Analysis) | % of time <77'
level at
Woodruff | Linked to Recreation interests. Desire to minimize flow surges and impact on Indian mounds, confederate emplacements, and artifact preservation | Not Applicable | Percent of time Commercial Navigation: Jan - May (Normal) = 18,000 cfs, Jan - May (Dry) = 16,000, Feb- April (Drought) = 16,000 cfs *********Percent of time Recreational Navigation: Jun - Dec (Normal) = 14,000 cfs, Jun-Aug & Dec (Dry) = 10,000 cfs, Sept- Nov (Dry)= 8,000 cfs, Jun-Aug & Dec (Drought) = 8,000 cfs, Sept - Nov (Drought) = 6,500 cfs *********************************** | | alachicola | Blountstown | Flow | Linked to
Chattahoochee
gage criteria | % of time >5 feet
(~11,600 cfs) on
Blountstown gage
(Duck ponds
between
Wewahitcha &
Sumatra) | % of time
tributaries
"disconnect" from
river, however, no
specific numeric
criteria identified | | Not Applicable | Not
Applicable | % of Time > 15 feet gage (38,300 cfs) (oyster fishery shutdown) and % of time level > 7 feet gage (15,800 cfs) for freshwater flow to the bay | Not Applicable | Not Applicable | Not Applicable | % of time flow > 6% reduction in flow on a monthly basis for dry years (6% reduction is from UIF_CMA median monthly flows of pre-dam years from IFA Analysis) | Not Applicable | Linked to recreation interests. Desire to minimize flow surges and erosion of historic sites. | Linked to
Recreation | Percent of time monthly average flows are between 14,000 and 18,000 cfs February through May and between 10,000 and 16,000 cfs June through January in a
non-drought year. Percent of time monthly average flows are <14,000 cfs February through May and <8,000 cfs June through January in a drought year. | | Apala | Sumatra | Flow | Linked to
Chattahoochee
gage criteria | Linked to
Chattahoochee
gage criteria | % of time
tributaries
"disconnect" from
river, however, no
specific numeric
criteria identified | The state of s | Linked to
adequate stream
flows for other
uses | Not
Applicable | Informational
need:
Productivity of
Shellfish | Not Applicable | Not Applicable | Not Applicable | Also, % of time flow > 6% reduction in flow on a monthly basis for dry years (6% reduction is from UIF_CMA median monthly flows of pre-dam years from IFA Analysis) | Not Applicable | Linked to recreation interests. Desire to minimize flow surges and erosion of historic sites. | Not Applicable | Historic Chattahoochee and USF archeologist concern over flooding and erosion of historic sites from Sumatra north to Phenix City. | | | Apalachicola
Estuary | | | Recreational fishery from Destin to Tampa | , | Not Applicable | Not Applicable | Not
Applicable | 7,500 acres of
healthy oyster
bars | Not Applicable | Not Applicable | Related to recreation | Areal coverage of freshwater seagrass; maintain location of 5 ppt isohaline | Not Applicable | Not Applicable | | The estuary is not a node in the river model; however, metrics for the estuary will be related to environment and seafood industry stakeholders. Metrics may relate to river flow at Sumatra. Currently this effort is being led by the Bay Assessment Ad-hoc committee. The Sustainable Water Management Plan for the ACF Basin will include an assessment of how suggested WMAs can contribute to the freshwater needs of the Apalachicola River, Floodplain and Bay. Although the estuary is not a node in the river model, ACFS is seeking a method for evaluating the impacts of freshwater flows at the Sumatra node on salinity, oysters and possibly other indicators. | | | Legend | | Evaluation usin
Additional infor | - | | Oversight and (
addresses con | Coordination Work (
aplex issues on whic | Group (TOCWG)
h individual sta | for the specific pur
keholders may disa | rpose identified in
agree. The statem | n the introduction to
ents, findings, conclu | this document fo | s, Inc. (ACFS) and has been presented to or use in developing a sustainable watenmendations contained in this report are, of any of the statements, findings, con | r management place
those of the aut | an. This report
thor(s) alone. | | BLACK & VEATCH Building a world of difference. In association with Georgia Water Resources Institute | ### **SEPA FIRM ENERGY BY PROJECT MWH/Week** | Month | Buford | West Point | George | |-------|--------|------------|--------| | | | | | | | | | | | Jan | 1,181 | 1,171 | 3,613 | | Feb | 1,449 | 3,888 | 4,667 | | Mar | 1,487 | 2,666 | 4,916 | | Apr | 865 | 2,469 | 4,487 | | May | 1,203 | 1,134 | 3,043 | | Jun | 1,615 | 1,758 | 3,229 | | Jul | 1,949 | 1,579 | 3,568 | | Aug | 2,528 | 1,264 | 3,306 | | Sep | 2,048 | 1,049 | 2,395 | | Oct | 1,225 | 893 | 2,088 | | Nov | 954 | 875 | 2,267 | | Dec | 783 | 1,557 | 3,496 | #### **Southeastern Power Administration** #### **Typical Hydropower Schedule** | | Jan | Feb | Mar | Apr | May | Jun | Jul | Aug | Sep | Oct | Nov | Dec | |---------------|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----| | 00:00 - 01:00 | | | | | | | | | | | | | | 01:00 - 02:00 | | | | | | | | | | | | | | 02:00 - 03:00 | | | | | | | | | | | | | | 03:00 - 04:00 | | | | | | | | | | | | | | 04:00 - 05:00 | | | | | | | | | | | | | | 05:00 - 06:00 | | | | | | | | | | | | | | 06:00 - 07:00 | | | | | | | | | | | | | | 07:00 - 08:00 | | | | | | | | | | | | | | 08:00 - 09:00 | | | | | | | | | | | | | | 09:00 - 10:00 | | | | | | | | | | | | | | 10:00 - 11:00 | | | | | | | | | | | | | | 11:00 - 12:00 | | | | | | | | | | | | | | 12:00 - 13:00 | | | | | | | | | | | | | | 13:00 - 14:00 | | | | | | | | | | | | | | 14:00 - 15:00 | | | | | | | | | | | | | | 15:00 - 16:00 | | | | | | | | | | | | | | 16:00 - 17:00 | | | | | | | | | | | | | | 17:00 - 18:00 | | | | | | | | | | | | | | 18:00 - 19:00 | | | | | | | | | | | | | | 19:00 - 20:00 | | | | | | | | | | | | | | 20:00 - 21:00 | | | | | | | | | | | | | | 21:00 - 22:00 | | | | | | | | | | | | | | 22:00 - 23:00 | | | | | | | | | | | | | | 23:00 - 24:00 | | | | | | | | | | | | | | TOTAL | | | | | | | | | | | | | Scheduled Hydropower All generation is scheduled on weekdays except daily minimum flow releases Appendix 2 **Model Output Examples** #### **USACE RIOP SUMMARY** **ACF Stakeholders** Last Updated : April 30, 2012 | Node / Gage | Miningale | ase Action Lev | dis Flow Sche | tine Europeania | A Romp sch | Notes | |--------------------|-----------|--|--|---|--------------------------------|---| | □anier | 600 cfs | http://ater.sam.usa
ce.army.mil@cfframe
.htm | | | | | | Peachtree Creek | 750 cfs | | | | | 650 cfs minimum flo□ under drought conditions | | West Point | 670 cfs | http://ater.sam.usa
ce.army.mil@cfframe
.htm | | | | | | W.F. □eorge | | http ater.sam.usa
ce.army.mil acfframe
.htm | | | | | | Andre□s | | | | | | Normal pool 102 MS□ | | Woodruff | | http:::::ater.sam.usa
ce.army.mil ⁻ acfframe
.htm | See Woodruff
Seasonal □elease
□raphs | □ 0.5 feet dra □do □n during spa □ning season C□SAM S□P 1130-2-9□ | See Woodruff
□elease ⊑imits | Normal pool 77 MS□ | | ACF □asin Composit | e Storage | http://ater.sam.usac | e.army.mil [™] ACFconst | orage.pdf | | | # Appendix 3 **Summer Caucus Meeting Summaries** # Apalachicola Caucus Meeting: August 8, 2012 – Performance Metrics for the SWMP/IFA An Apalachicola Caucus Meeting was held on August 8, 2012, at the North Florida Research and Education Center. Those in attendance included the following: | Members Attending | ■ Brad Moore | |----------------------|---| | ■ Lee Garner | ■ Steve Leitman | | ■ Kal Knickerbocker | ■ Homer Hirt | | ■ Darrell Smith | ■ Betty Webb | | ■ David Wright | ■ David McLain | | ■ John Alter | ■ Bill McCartney | | ■ Chad Taylor | <u>Consultants:</u> | | ■ Dan Tonsmeire | ■ Kristin Rowles, Technical Coordinator | | ■ Shannon Lease | ■ Steve Simpson, Black & Veatch | | ■ Nick Commerford | ■ Robert Osborne, Black & Veatch | | ■ Shannon Hartsfield | | Marty Kelly and Pam Latham from Atkins joined the meeting by phone. In addition to this summary, the meeting agenda, meeting sign-in sheet, and revised Performance Criteria Identification Summary are attached. ### **Welcome & Introductions** Dave McLain welcomed everyone and acknowledged the lunch sponsors, including six counties in the region. Kristin Rowles welcomed everyone and asked everyone to introduce themselves. After introductions, she noted that this meeting is a first step in the performance metrics development process. Kristin presented the meeting objectives as follows: - Learn about performance metrics and their use in the SWMP/IFA process - Discuss the performance metrics table fill in blanks where we can and make needed modifications - Identify information needs - Evaluate if the table entries are representative of interests in the caucus and ACFS Kristin said that in December, the Governing Board (GB) would make a decision to proceed with the list of performance metrics for modeling. At that time, agreement on the performance metrics list would be a decision that all stakeholder interests were expressed in the list. She noted that it would not necessarily mean agreement on the values of the individual performance metrics. She said consensus development related to tradeoffs among performance metrics would come later when model results could inform the discussions. She explained that in this meeting, the focus would be to document the preferences of stakeholder interest groups. Kristin said the criteria will be incorporated in the model development and the analysis of modeling results; revisions will occur through the process of further discussion of performance metrics in the fall and through the process of building stakeholder consensus during the iterative model runs. Kristin asked if anyone had questions or comments. Comments included the following: - Steve Leitman asked when ACFS would evaluate tradeoffs among interests and performance metrics. Kristin said that the consideration of tradeoffs and negotiation over performance metrics levels would come as the modeling proceeds and informs the discussion. She noted the process was designed not to try to force the decision too early in the process. She said it was important for members to be able to make informed decisions. - Chad Taylor noted that there were several members at the meeting that were from the Florida Agriculture Extension today. - Dave McLain noted he was leery about the use of the word consensus. He stated he was not sure how filling out squares is consensus. He believes that the word consensus implies agreement on the value of various performance metrics and not just that they are representative of all interests. Brad Moore said he had discussed this part of the project with someone who had experience in this type of work. Brad was encouraged to think of alternatives as "better" or "worse" rather than in terms of "absolutes" at this stage of the project. Bill McCartney noted, however, there are some absolutes in the basin. # Presentation on Performance Metrics & Review of existing Performance Metrics Steve Simpson gave a brief overview of the Approach to Metric Development Technical Memorandum, which was distributed to the caucus members in advance of the meeting. He noted that the latest revision (June
28, 2012) included definitions of terms and other information for clarification as requested by ACFS Technical Oversight and Coordination Work Group (TOCWG) members. Steve explained the overall approach for metric development. Steve noted there has been some discussion in previous caucus meetings about the definitions of constraints and performance criteria. Steve explained performance criteria are a measure at a specific location and used to evaluate model output. On the other hand, constraints are variable inputs to the model which set a desired physical condition at a location. He noted the Upper Chattahoochee caucus meeting discussed the use of the word "preferences" in lieu of "constraints" or "needs". Steve reminded the members that this meeting was not the last chance to modify the performance metrics. He noted Black & Veatch will submit a revised Task 2 Performance Metric memorandum in September, 2012. This will included a new section that details the results of the caucus meetings. Steve said Atkins will submit a final environmental flows deliverable to the TOCWG and caucuses for review on October 12, 2012. Afterwards, additional subbasin caucus meetings will be held in October to review Atkins final environmental flows deliverable. This will include discussions on how environmental flows will be integrated into the SWMP modeling and performance metrics. The overall conclusion of this task is targeted for December, when the Governing Board will consider approval of the Task 2 memorandum from B&V, including agreement that the proposed list of performance metrics for use in SWMP modeling is fully representative of interests in ACFS. Steve asked if there were any questions or comments so far. Comments included the following: - Dan Tonsmeire questioned the word imbalances in the memorandum. Steve noted that this was a generalized term. - Dan Tonsmiere asked if performance metrics could be changed later. Steve answered that yes, they can be. - One member asked about the weekly model time step and how we will understand or assess variability that occurs within a week. Steve explained there were different levels of accuracy of all the variables in model from hourly to weekly to monthly. Steve said that, given the varying temporal accuracy of inputs, weekly average flows are appropriate for planning without implying a level of accuracy that is beyond the level of data detail. Within the weekly average time step, managing flows to minimize high and low flows is a matter of proper operation. Additionally, the RES-SIM model runs to be conducted will provide model results at a daily timestep. - Chad asked if we would be able to assess a change such as the reduction of agricultural demand by 15%. Steve noted this could be a water management alternative. Our process includes evaluating the outcomes with varying demands which would need to be estimated based on the management practices selected. Kristin asked Marty Kelly from Atkins to discuss the Apalachicola Bay evaluation. She noted that Atkins will provide a recommendation for the evaluation of the effect of flows on estuarine ecology on August 15th. Marty discussed existing models for the bay, including hydrodynamic models and statistical/regression based models. Shannon Hartsfield questioned whether the model would cover the entire bay. Marty said that the hydrodynamic model covers the full bay, but he was unsure about the extent of the statistical/regression models. Marty noted that a major question is whether the statistical/regression model will support evaluation at time and places that ACFS wants to know about. He noted that the statistical/regression model would be less expensive. Dan Tonsmiere asked if both model approaches would allow for the consideration of how flows affect the bay ecology. Marty answered yes; the models will allow for "what-if" scenarios with respect to flows to be evaluated for their impacts on ecology. Dan Tonsmiere said that in addition to evaluating bay health with respect to the needs of oysters as a target species, it would also be useful to understand impacts on nutrient levels. After additional discussion about an appropriate flow regime, Marty confirmed that Atkins would provide a recommendation about how to proceed with assessing the effect of flows on Apalachicola Bay on August 15th. Next, Kristin asked Steve to continue the discussion about the performance metric identification summary. Steve stressed the central focus of the performance metrics memo to be the performance metric identification summary. A larger 11X17 version was handed out to members. He noted the summary was broken out by sub-basin caucus, nodes, and stakeholder interests. He said this summary will be a primary communication handshake between the modelers and the stakeholders. Steve noted the legend located at the bottom of the summary table. Next, Steve Simpson explained that the basis for most of the metrics already included on the summary was the work from the ACFS Data Needs and Sustainability Work Group in 2010. Steve noted that the input of the members is needed to review and make sure the numbers are still appropriate. Steve explained that during the Middle and Lower Chattahoochee and Upper Chattahoochee Caucus meetings there were some items that were noted as "Not Applicable" or "No Specific Numeric Criteria Identified". Steve said that not every box needs to have a metric, but that the desire is to make sure that all of the stakeholder interests are represented. He said that today the group would review, modify, and add specific entries into the summary table. #### **Discussion on Summary Table** Next, the committee discussed each node in the Performance Metric Identification Summary. Edits to the summary are included in the revised handout attached to the meeting summary. For several parameters, the 2010 input from the Data Needs and Sustainability Workgroup was reviewed and incorporated. Some of the discussion points from this exchange are bulleted below. - Dan Tonsmiere provided desired commercial navigation metrics for the Chattahoochee node (Percent of time Commercial Navigation: Jan May (Normal) = 18,000 cfs, Jan May (Dry) = 16,000, Feb- April (Drought) = 16,000 cfs) and linked both Blountstown and Sumatra nodes to this criteria. Dan will provide more specific numbers to address dry, drought, and normal years for this analysis. - Dan Tonsmiere provided desired recreational navigation metrics for the Chattahoochee node (Percent of time Recreational: Jun - December (Normal) = 14,000 cfs, June-August and December = 10,000 cfs and Sept-Nov = 8,000 cfs (Dry), June-August and December = 8,000 cfs and Sept-Nov = 6,500 cfs (Drought) and linking both Blountstown and Sumatra nodes to this criteria. Dan will provide the dry, drought, and normal years for this analysis. - 47-49' is needed at the boat dock near the Chattahoochee gage to support boat recreation. We need to confirm that the dock elevation gage correlates directly to the USGS Chattahoochee gage. Steve Leitman will check on this. - Port St. Joe needs 3-5 MGD for consumptive use. - Hydropower needs at the Woodruff gage were thought to be good, but should be confirmed with SEPA. - Do not refer to navigation "windows" but to seasons. "Windows" implies active management for navigation. - Members felt that Urban Agriculture metrics were not applicable for all nodes; however, Bill McCartney will check Wewahitchka. - Members noted that no specific numeric criteria were identified for farm agriculture. - Members suggested that there was an information need to confirm intake elevation of Gulf Power Plant Sholtz. - Steve Leitman asked if there can be additional notes added to the tables. For example, append PAL letters to the table. Steve Simpson noted this was a good suggestion. - Shannon Hartsfield noted that shellfish beds are closed to fishing based on bacterial levels when river level is above 15 ft stage at the Blounstown gage. After some discussion, this was added as a metric for the seafood industry for the Blountstown gage. - Members discussed needs versus wants with these metrics. Dave McLain commented that the IFA will provide additional metrics - Metrics for historic/cultural are linked to other uses/interests in this region. Chad Taylor will noted that Nancy White has indicated that some flow pulses can be a problem for archeological resources in the region, especially releases for navigation windows. - Bill McCartney will confirm on Industry and Manufacturing metrics at the Apalachicola gages. - Dan Tonsmiere said he does not really like the PAL requirements from USFWS as metrics and would prefer metrics that demonstrate the loss in flow from pre-dam to current conditions. - The group requested that Apalachicola Bay be listed on the summary and noted that while the bay is not a flow node and is not in the river model, bay health is an important performance metric. #### **DISCUSSION OF NEXT STEPS AND WRAP-UP** Kristin asked if anyone could think of a stakeholder interest group or individual who could not attend the meeting but who should be reached out to gain their input. Kristin thanked the group for their input and participation, and the meeting was adjourned. #### **ACTION ITEMS** - Additional information is needed to describe a metric based on % of time tributaries "disconnect" from the river. - Chad Taylor will research the connection of inundation of the floodplain for tupelo trees and subsequent bee production. - The intake elevation of Gulf Power Plant Scholtz needs to be confirmed - Bill McCartney to check Wewahitchka as it relates to the Blountstown gage for urban agriculture. - Steve Leitman will confirm that the dock elevation gage correlates directly to the USGS Chattahoochee gage. - Bill McCartney will confirm on Industry and Manufacturing metrics at the Apalachicola gages. - Dan Tonsmiere will provide more specific numbers for recreation and navigation to address dry,
drought, and normal years for this analysis. # BLACK & VEATCH | ACFS Ap | alachicola Basin (| Paucus | 8/8/292 | |--------------------------------|---------------------|--------------------------------------|-----------------------------| | Name | Organization | E-mail | | | Stephen Simpson | Black & Veatch | SimpsonSu | | | Lee GARNEN
Kal Knickerbocke | City of Chattahooc | hee Citymgaefair
Knickeked | | | David Unight | FORCS - water Poli | cy Dornell, Smith | @ freshronfrenda | | John Otal | Markon Bucc. | coulty treeman | ophonicou | | Day Tourme | nos Apalachicala Ru | redesign Dans A
iverbooner Shanne | palachicala Rivar | | | ar VF | | fl.edu | | Bred, Moore | ACFS | . Bmosrele | ss Q Gosuto.com | | Homer His | And #SU/- | | am a grail. Co | | Bethy Webb
David Mchain | Coty Of Aprilact | icola betypue | ESPONSE @ FAIRPOINT. | | Zill melant | Ney ACFS-EXCO | m/AS-BC_ billy | ncca i ture 32/2 yuroo: com | www.bv.com Working together to share a common resource. # ACF Stakeholders <u>Apalachicola Caucus</u> <u>Meeting on Performance Metrics</u> August 8, 2012 1:00PM to 5:00PM Eastern North Florida Research and Education Center (Directions: http://nfrec.ifas.ufl.edu/locations_quincy.shtml) #### DRAFT AGENDA <u>Meeting Objective</u>: To initiate the process of developing a list of performance indicators for the Sustainable Water Management Plan by learning about, reviewing, modifying and amending the prior-developed ACFS list of performance indicators and identifying information needs for metric development. | Ag | renda Topics | Meeting Materials | |----|---|--| | 1. | Welcome & Introductions (Kristin Rowles, 10 minutes) | Meeting Agenda | | 2. | Overview on Performance Metric Process: Questions & Answers (Kristin Rowles, 15 minutes) | | | 3. | Update on Approach to Evaluation of Impacts of Freshwater Inflow on Bay (Atkins/Kristin Rowles, 25 minutes) | | | 4. | Presentation on Performance Metrics: What they are, how they will be used, approach to development, schedule for incorporating environmental flows information (Black & Veatch, 50 minutes) | Performance Metrics Technical
Memorandum_062812 | | | BREAK (15 minutes) | | | 5. | Review of existing list of performance metrics: What is missing, what should be changed (Black & Veath/Kristin Rowles, 40 minutes) | Performance Metrics Technical
Memorandum_062812: Pages
8-9 (see page 6 for link to 11 x
17 version) | | 6. | Discussion: Does the list represent the interests of my caucus? (Kristin Rowles, 30 minutes) | | | 7. | Discussion of next steps: Information needs, follow-up steps (Kristin Rowles, Black & Veatch, 25 minutes) | | | 8. | Wrap-Up and Adjournment (15 minutes) | | Last Updated : April 30, 2012 August 8, 2012 | Caucus | Node / Gage | | Metric Mai | gation | wate | Wate | Supply Farm | diciture Indus | stry & turing and seafo | od Industry Hydr | o Power Them? | | Overnment Environm | ert dion pusings | Social Deservation of Children Control of Children Children of Chi | Agriculture | Itout Figure | Notes | | |--------------------|-----------------|-------|---|---|---|---|-------------|---|-------------------------|---|---|---|--|---|--|---------------|--------------|-------|--| | | Lanier | Level | | Variable average
level, see graph
Lake Lanier | | Variable
average level,
see graph
Lake Lanier | | | | | | Variable
average level,
see graph Lake
Lanier | | | | <u>Figure</u> | | | | | | Buford Gage | Flow | | Monthly variable
average daily
flow, see graph
Buford | | Monthly variable average daily flow, see graph Buford | | | | | | | | | | | | | | | Chattahoochee | Norcross | Flow | | | | | | | | | | | Meet flow
guidelines in
FWS PAL Letter | | | | | | | | Upper Chatt | Morgan Falls | Flow | | Storage
adjustment is -
250 cfs on
weekends and
+100 cfs on
weekdays | Monthly
variable
average daily
flow, see graph
Morgan Falls | Monthly
variable
average daily
flow, see
graph Morgan
Falls | | | | Storage
adjustment is -
250 cfs on
weekends and
+100 cfs on
weekdays | | Monthly
variable
average daily
flow, see graph
Morgan Falls | | | | | | | | | | Peachtree Creek | Flow | | | 750 cfs
constant
(normal), 650
cfs (drought) | 750 cfs
constant
(normal), 650
cfs (drought) | | | | | | 750 cfs
constant
(normal), 650
cfs (drought) | % of time flow
between 1000
and 1250 cfs for
recreation
(National Park
Service) | | | <u>Figure</u> | | | | | | Whitesburg | Flow | Instantaneous
minimum
750 cfs, daily
average 1000
cfs, 7-Day
average 1350
cfs | Instantaneous
minimum
750 cfs, daily
average 1000
cfs, 7-Day
average 1350
cfs | minimum
750 cfs, daily
average 1000
cfs, 7-Day | minimum | | Instantaneous
minimum
750 cfs, daily
average 1000
cfs, 7-Day
average 1350
cfs | | Instantaneous
minimum
750 cfs, daily
average 1000
cfs, 7-Day
average 1350
cfs | Instantaneous
minimum
750 cfs, daily
average 1000
cfs, 7-Day
average 1350
cfs | minimum
750 cfs, daily
average 1000
cfs, 7-Day | % of time flow >2200 cfs for recreation based on 4 ft depth | cfs, 7-Day | | | | | | | | West Point | Level | | April-Sept 635,
632.5 at all other
times | April-Sept 635,
632.5 at all
other times | April-Sept 635,
632.5 at all
other times | | April-Sept
635, 632.5 at
all other times | | | April-Sept 635,
632.5 at all other
times | | April-Sept 635,
632.5 at all other
times | | | | | | | | g. | West Point Gage | Flow | | | | | | | | | | | Meet flow
guidelines in
FWS PAL Letter | | | | | | | | ower Chattahoochee | Columbus | Flow | Instantaneous
minimum
800 cfs, daily
average 1350
cfs, 7-Day
average 1850
cfs | Instantaneous minimum 800 cfs, daily average 1350 cfs, 7-Day average 1850 cfs | cfs, 7-Day | Instantaneous
minimum
800 cfs, daily
average 1350
cfs, 7-Day
average 1850
cfs | | Instantaneous
minimum
800 cfs, daily
average 1350
cfs, 7-Day
average 1850
cfs | | minimum
800 cfs, daily
average 1350
cfs, 7-Day
average 1850
cfs | Instantaneous
minimum
800 cfs, daily
average 1350
cfs, 7-Day
average 1850
cfs | Instantaneous
minimum
800 cfs, daily
average 1350
cfs, 7-Day
average 1850
cfs | minimum
800 cfs, daily
average 1350
cfs, 7-Day | Instantaneous
minimum
800 cfs, daily
average 1350
cfs, 7-Day
average 1850
cfs | | | | | | | Middle & Lo | W.F. George | Level | |
April-Sept 190,
187.5 at all other
times | April-Sept 190,
187.5 at all
other times | April-Sept 190,
187.5 at all
other times | | April-Sept
190, 187.5 at
all other times | | | April-Sept 190,
187.5 at all other
times | April-Sept 190,
187.5 at all
other times | April-Sept 190,
187.5 at all other
times | | | <u>Figure</u> | | | | | 2 | W.F. George | Flow | % of Time 9 ft
Navigation is
Supported | | | | | | | | | | Meet flow
guidelines in
FWS PAL Letter | | | | | | | | | Andrews | Level | % of Time 9 ft Navigation is Supported | | | | | | | | | | | | | | | | | | | Columbia | Flow | | Daily average
2000 cfs, 7-Day
average 2000
cfs | Daily average
2000 cfs, 7-
Day average
2000 cfs | Daily average
2000 cfs, 7-
Day average
2000 cfs | | Daily average
2000 cfs, 7-
Day average
2000 cfs | | Daily average
2000 cfs, 7-
Day average
2000 cfs | Daily average
2000 cfs, 7-Day
average 2000
cfs | Daily average
2000 cfs, 7-
Day average
2000 cfs | Daily average
2000 cfs, 7-Day
average 2000
cfs | Daily average
2000 cfs, 7-
Day average
2000 cfs | | | | | | ## **Performance Criteria Identification Summary** **ACF Stakeholders** Last Updated: April 30, 2012 August 8, 2012 | Caucus | Node / Gage | | Metric Mai | Rest | eation water | Quality | a Supply Faire | Spiculture Indus | stry & turing | od Industry Hyd | The th | d bomer Tocale | Overnment Environt | pusings
pusings | onomic prest | L & Cutural Urban | Agriculture Notes | |--------------|-------------------------|-------|--|--|--|---|---|--|---|--|--|--|--|---|--|---|--| | | Woodruff | Level | April-Sept 77.5,
76.5 at all other
times | April-Sept 77.5,
76.5 at all other
times | 76.5 at all other | April-Sept
77.5, 76.5 at
all other times | | April-Sept
77.5, 76.5 at
all other times | | April-Sept 77.5,
76.5 at all other
times | April-Sept 77.5,
76.5 at all other
times | April-Sept 77.5,
76.5 at all other
times | 76.5 at all other times | April-Sept 77.5
76.5 at all other
times | , | | Desired flow contribution 50% from Chattahoochee and Flint basins (Middle Chattahoochee) | | | Griffin | Flow | | | | | | | | | | | Six-inch flow depth for fish passage | | | | | | | Carsonville | Flow | average daily flow, 100 cfs 1- | 250 cfs annual
average daily
flow, 100 cfs 1-
day minimum | Unimpaired
daily 7Q10 plus
30% | | | | | | | | Six-inch flow
depth for fish
passage | | | | | | Flint | Montezuma | Flow | | | | | | | | | | | Six-inch flow depth for fish passage | | | | <u>Figure</u> | | | Albany | Flow | | | | | | | | | | | Six-inch flow depth for fish passage | | | | | | | Newton | Flow | | | | | | | | | | | Six-inch flow depth for fish passage | | | | | | | Bainbridge | Flow | | | | | | | | | | | Six-inch flow depth for fish passage | | | | | | cola | Chattahoochee | Flow | See Note. | | Informational
Need : % of
time tributaries
"disconnect"
from river | | Informational
Need:
Inundation of
flooplain for
tupelo trees
and
subsequent
Bee Production | N/A | Liinked Seafood to Chattahooch ee recreation gage criteria; floodplain detritus necessary for organic material for shellfish productivity | % of time 56' -
77' level at
Woodruff | Informational
Need: Need to
confirm Intake
Elevation of Gulf
Power Plant
Sholtz | % of time 56' -
77' level at
Woodruff | Comparison of pre & post dam flow: Requires Further Discussion | % of time 56' -
77' level at
Woodruff | Linked to
Recreation
interests.
Desire to
minimize
flow surges
to minimize
impact on
Indian
mound
preservation | N/A | Percent of time Commercial Navigation: Jan - May (Normal) = 18,000 cfs, Jan - May (Dry) = 16,000, Feb- April (Drought) = 16,000 cfs *********Percent of time Recreational Navigation: Jun - Dec (Normal) = 14,000 cfs, Jun-Aug & Dec (Dry) = 10,000 cfs, Sept- Nov (Dry)= 8,000 cfs, Jun-Aug & Dec (Drought) = 8,000 cfs, Sept - Nov (Drought) = 6,500 cfs *********************************** | | Apalachicola | Blountstown | Flow | Linked to
Chattahoochee
gage criteria | Linked to
Chattahoochee
gage criteria | Informational
Need: % of
time tributaries
"disconnect"
from river | N/A | N/A | N/A | % of Time >
15 ft. above
flood level | N/A | N/A | N/A | IFA Seasonal
Water Flow
(Atkins) | N/A | N/A | Bill McCartney
to check
Wewahitchka | | | | Sumatra | Flow | Linked to
Chattahoochee
gage criteria | Linked to
Chattahoochee
gage criteria | Informational
Need: % of
time tributaries
"disconnect"
from river | Informational Need: City of Port St. Joe water supply canal elevation (Dan Tonsmiere) | Linked to
adequate
stream flows
for other uses | N/A | Informational
need:
Productivity
of Shellfish | N/A | N/A | N/A | IFA Seasonal
Water Flow
(Atkins) | N/A | N/A | N/A | | | | Apalachicola
Estuary | N/A | | | | | | | | | | | | | | | The estuary is not a node in the river model; however, metrics for the estuary will be related to environment and seafood industry stakeholders. Metrics may relate to river flow at Sumatra. | Evaluation using Model Output Additional information needed Revision to constraint as stated needed #### **Model Operational Sequence** Meet all numeric constraints, operational rules, withdrawals, permit requirements ## **Performance Criteria Identification Summary** **ACF Stakeholders** Last Updated : April 30, 2012 Aug 8 2012 ## Flint Caucus Meeting: August 9, 2012 – Performance Metrics for the SWMP/IFA A Flint Caucus Meeting was held on August 9, 2012, at Covey Rise near Camilla, Georgia. Those in attendance included the following: | Members Attending | ■ Gordon Rogers | |-------------------|---| | ■ Jim Poff | ■ David Dixon | | ■ Richard Greuel | ■ Robin Singletary | | ■ Tim Thoms | ■ Brad Moore | | John Heath | ■ Charles Stripling | | ■ Vince Falcione | | | ■ Jimmy Davis | <u>Consultants:</u> | | ■ Marilyn Royal | ■ Kristin Rowles, Technical Coordinator | | ■ Ellis Cadenhead | ■ Steve Simpson, Black & Veatch | | ■ Todd Massey | ■ Robert Osborne, Black & Veatch | | ■ Mark Masters | ■ Charles DeCurtis, Atkins | | ■ Woody Hicks | | In addition to this summary, the meeting agenda, meeting sign-in sheet, and revised Performance Criteria Identification Summary are attached. #### **Welcome & Introductions** Kristin welcomed everyone and asked them to introduce themselves. After introductions, Kristin said that today was the first step in the performance metrics development process. She noted it would be an informational and input gathering meeting on performance metrics. Later discussion will support consensus building and the incorporation of environmental flows information in to the performance metrics, after work is completed by Atkins in October. Kristin presented the meeting objectives as follows: - Learn about performance metrics and their use in the SWMP/IFA process - Discuss the performance metrics table fill in blanks where we can and make needed modifications - Identify information needs Evaluate if the table entries are representative of interests in the caucus and ACFS Kristin explained that in this meeting, the focus would be to document the preferences of stakeholder interest groups. She noted that it may be difficult to come up with metrics in some cases today, and we may identify some informational needs. She said agreement on the performance metrics is not needed at this time. The criteria will be incorporated in the model development and the analysis of modeling results; revisions will occur through the process of further discussion of performance metrics in the fall and through the process of building stakeholder consensus during the iterative model runs. Kristin said that for the performance indicators, the decision in December by the Governing Board (GB) would address whether the GB members feel that all interests are represented in the list of performance metrics. She noted that it will not necessarily indicate consensus agreement on the values of the performance metrics. Consensus development related to tradeoffs among performance metrics will come later when model results can inform the discussions. Next, Kristin asked if there were any questions or comments. Charles Stripling noted that the caucus has 100% attendance today, and he also noted while several caucus members have
agricultural ties, the caucus does not have someone that truly fills the agricultural slot for the caucus. #### **Presentation on Performance Metrics & Review** Steve Simpson gave a brief overview of the Approach to Metric Development Technical Memorandum, which was distributed to the caucus members in advance of the meeting. He noted that the latest revision (June 28, 2012) included definitions of terms and other information for clarification as requested by ACFS Technical Oversight and Coordination Work Group (TOCWG) members. Steve explained the overall approach for metric development. He said that sub-basin caucus meetings on metric development are being held in July and August. He noted Black & Veatch will submit a revised Task 2 Performance Metric memorandum in September, 2012. This will included a new section that details the results of the caucus meetings. He reminded the members that this meeting was not the last chance to modify the performance metrics. Steve said Atkins will submit a final environmental inundation and flows deliverable to the TOCWG and caucuses for review in October, 2012. Afterwards, additional sub-basin caucus meetings will be held in October to review Atkins' final environmental flows deliverable. This will include discussions on how environmental flows will be integrated into the SWMP modeling. The overall conclusion of this task is targeted for December, when the Governing Board will consider approval of the Task 2 memorandum from B&V, including the proposed list of performance metrics for use in SWMP modeling. Steve noted there has been continued discussion about the definitions of and differences between model constraints and performance criteria. Steve explained that performance criteria are a measure at a specific location and used to evaluate model output. On the other hand, model constraints are configured in the model to set a desired physical condition at a specific location. Steve noted there was some discussion at the Upper Chattahoochee Caucus meeting that the term "preferences" be used in lieu of "constraints" or "needs". Tim Thoms asked if there aren't actual constraints in the basin. Steve noted there were some structural constraints such as intake elevations. Steve noted that changing the definition of constraint does not change the way the model runs. Ellis Cadenhead asked if we were going to consider water moratoriums. Steve advised that this was a water management alternative example. Several members expressed concern that they do not quite understand performance metrics. Steve reassured that this was ok and today would help to get more comfortable with the metrics and models. Steve noted that a model is a mathematical balance and the operation is similar to balancing a checkbook. He sketched a rough draft of the model on a flip chart and noted variables such evaporation, and reservoirs, demands. Next, he discussed how the impact of groundwater withdrawals are incorporated into the model. Steve stressed the central focus of the performance metrics memo is the performance metric identification summary. A larger 11X17 version was passed out to members. He noted the summary is broken out by sub-basin caucus, nodes, and stakeholder interests. He said this summary will be a primary communication point between the modelers and the stakeholders. Steve noted the legend located at the bottom of the summary table. Next, Steve Simpson explained that the basis for most of the metrics already included on the summary was the work of the ACFS Data Needs and Sustainability Work Group in 2010. Steve noted that the input of the members is needed to review and make sure the numbers are still appropriate. Steve explained that during the other caucus meeting there were some items that were noted as "Not Applicable" or "No Specific Numeric Criteria Identified". Steve said that not every box needs to have a metric, but that the desire is to make sure that all of the stakeholder interests are represented. He said that today the group would review, modify, and add specific entries into the summary table. Brad Moore noted that when he talked with someone that has been through these exercises before, they encouraged thinking of results in terms of metrics as "better" or "worse" rather than as absolutes. #### **Discussion on Summary Table** Next, the committee discussed each node in the Performance Metrics Identification Summary. Edits to the summary are included in the revised handout attached to the meeting summary. For several parameters, the 2010 input from the Data Needs and Sustainability Workgroup was reviewed. Some of the discussion points from this exchange are bulleted below. - Members felt there was more research need to incorporate Lake Horton, Kedron, and Peachtree in the model for the Griffin node for the recreation interest. - Members noted that navigation was not applicable for most of their nodes of interest. - Members discussed wasteload allocation and applied this parameter as metrics in water quality. - Homer Hirt and Billy Houston should be asked if there is an appropriate metric for commercial navigation at Bainbridge. - Gordon Rogers said that 500-600 cfs is needed for recreation above Carsonville. - For Montezuma, a recreation metric might be set based on May 2012 gage readings plus 150-200 cfs. - Members asked for more information about how water supply reservoirs above Griffin will be modeled. - Steve explained how groundwater withdrawals are accounted for in the model as a surface water withdrawal. - Members suggested that the minimum flow for the Weyerhauser wastewater treatment discharge could be a water quality metric. - David Dixon offered to find out if a certain level of inflow is needed for Lake Chehaw. - Members identified a community concern related to recreation and historic/cultural at Radium Springs. Gordon, Woody, and David Dixon will check into flow needs related to this concern. - Members discussed flow depth for shoal bass passage and agreed more information was needed, but identified the percent of time a 10-12" depth during spawning February 15-June 15 and 6" depth at other times was achieved was a desired performance criteria. It was noted that the IFA may not be able to tell us the flows needed to attain this depth at these times, but it was recommended that Atkins contact Auburn University researchers that have researched this habitat need to determine whether flow needs can be estimated. - Members requested a copy of the draft Water Demands Technical Memo. - For agriculture, members noted that many smaller users will not be included in the water demands estimate for agriculture. Mark Masters noted that demand figures are available at the county level for some smaller users. - Gordon Rogers noted there is a permitted agricultural withdrawal from the mainsteam of the Flint near Carsonville, and the permit for this withdrawal includes a minimum flow threshold. This might be used to set an agricultural metric. There is another near the Montezuma gage. The threshold is 25% annual average discharge level for permits issued after 1993. - Ellis Cadenhead offered to ask Crisp County Power about its flow needs for Lake Blackshear operations. - David Dixon offered to look into flow needs for Plant Mitchell operations. - Members discussed concerns with the issue of flow split between the Chattahoochee and the Flint - Concerns about the performance metric suggested by the Mid/Lower Chattahoochee Caucus to evaluate the relative flow contribution of the Chattahoochee and Flint Rivers were discussed by the group. Woody Hicks said his analysis shows that the historical flow contribution is 36-43% for the Flint. Gordon Rogers, Charles Stripling, and Woody Hicks all noted concerns about how this metric would be measured and how it would be used in the analysis and noted specific concerns with calculation of the metric. #### **DISCUSSION OF NEXT STEPS AND WRAP-UP** Kristin asked if anyone could think of a stakeholder interest group or individual who could not attend the meeting but who should be reached out to gain their input. Charles Stripling noted that there was not a specific attendee representing agriculture, but that he believed that agriculture interests were adequately considered by the group present. Kristin thanked the group for their input and participation, and the meeting was adjourned. #### **ACTION ITEMS** - Gordon Rogers to investigate permitted agricultural needs for Carsonville and Montezuma. - Gordon Rogers was to investigate flows needed for Montezuma gage as they relate to recreation. - Gordon Rogers to research flow to provide Lake Blackshear and Lake Chehaw levels for recreation. - FERC permits for Lake Blackshear and Lake Chehaw need to be checked (Ellis Cadenhead or David Dixon). - Members asked for more information about how water supply reservoirs above Griffin will be modeled (B&V). - Homer Hirt and Billy Houston should be asked if there is an appropriate metric for commercial navigation at Bainbridge. - David Dixon offered to find out if a certain level of inflow is needed for Lake Chehaw. - Gordon, Woody, and David Dixon will check into flow needs for Radium Springs. - Kristin will send out a copy of the draft Water Demands Technical Memo to caucus members. - Ellis Cadenhead offered to ask Crisp County Power about its flow needs for Lake Blackshear operations. - David Dixon offered to look into flow needs for Plant Mitchell operations. - Research is needed to address recreation interest needs for Lake Horton, Kedron, and Peachtree in the model for the Griffin node. - Atkins will be asked to contact Auburn University researchers that have researched this shoal bass habitat needs to determine whether flow needs can be estimated. 0 Working together to share a common resource. ### August 9, 2012 Meeting Sign-In Sheet | 1. Stephen Simpson / Black & Veatch | 9. Robin Singletan | |-------------------------------------
-------------------------| | 2. Jim Poff/Clayton Ca. H2O Auth. | 10. ROBERT OF BORNE/BUL | | 3. Bichard Grenel | 11. Brad Moure | | 4. TIM THOMS | 12 | | 5. John Heath | 13 | | 6. VWCE FALCIENE | 14 | | 7. Simmy DAVIS | 15 | | 8. Wailin Royal | 16 | | 17 1/3 CADON HOND | 18 | | 19. Todd MASSON | 20 | | 21. Mark Maytes | 22 | | 23. Charles DeCurtis | 24 | | 25. Woody Hinks | 26 | | 27. Gurdon Rogers | 28 | | 29. David Dixon | 30 | Working together to share a common resource. # ACF Stakeholders <u>Flint Caucus</u> <u>Meeting on Performance Metrics</u> August 9, 2012 1:00PM to 5:00PM Eastern **Covey Rise Plantation** #### DRAFT AGENDA <u>Meeting Objective</u>: To learn about, review, and if necessary modify and amend existing list of performance indicators. | Ag | renda Topics | Meeting Materials | |----|--|---| | 1. | Welcome & Introductions (Kristin Rowles, 10 minutes) | Meeting Agenda | | 2. | Presentation on Performance Metrics:
What they are, how they will be used,
approach to development, schedule for
incorporating environmental flows
information (Black & Veatch, 50
minutes) | Performance Metrics Technical
Memorandum_062812 | | 3. | Review of existing list of performance metrics: What is missing, what should be changed (Black & Veath/Kristin Rowles, 50 minutes) | Performance Metrics Technical
Memorandum_062812: Pages 8-9
(see page 6 for link to 11 x 17 version) | | | BREAK (1 | 5 minutes) | | 4. | Discussion: Does this list represent the interests of my caucus? (Kristin Rowles, 45 minutes) | | | 5. | Discussion of next steps: Information needs, follow-up steps (Kristin Rowles, Black & Veatch, 45 minutes) | | | 6. | Wrap-Up and Adjournment (15 minutes) | | ## **Performance Metrics Identification Summary** ## **ACF Stakeholders** Last Updated : August 13, 2012 | Caucus | Node / Gage | | Metric Ma | | Mate | | I Supply Fain! | rediculture Indus | stry & turings | ood Industry , hyd | o Power Therr | | Overnment Environm | pusites | ordicorner / | e & Cultural Urban | Agriculture | trout figure | Not | es | | |--------------------|-----------------|-------|---|---|---|---|----------------|---|----------------|---|---|---|---|---|--------------|--------------------|---------------|--------------|-----|----|--| | | Lanier | Level | | Variable
average level,
see graph
Lake Lanier | Variable
average level,
see graph Lake
Lanier | Lake Lanier | | | | | | Variable
average level,
see graph Lake
Lanier | | | | | <u>Figure</u> | | | | | | 40 | Buford Gage | Flow | | Monthly
variable
average daily
flow, see
graph Buford | | Monthly
variable
average daily
flow, see
graph Buford | | | | | | | | | | | | | | | | | ahoochee | Norcross | Flow | | | | | | | | | | | Meet flow
guidelines in
FWS PAL Letter | | | | | | | | | | Upper Chattah | Morgan Falls | Flow | | Storage
adjustment is -
250 cfs on
weekends and
+100 cfs on
weekdays | Monthly
variable
average daily
flow, see graph
Morgan Falls | Monthly
variable
average daily
flow, see
graph Morgan
Falls | | | | Storage
adjustment is -
250 cfs on
weekends and
+100 cfs on
weekdays | | Monthly
variable
average daily
flow, see graph
Morgan Falls | | | | | | | | | | | | Peachtree Creek | Flow | | | 750 cfs
constant
(normal), 650
cfs (drought) | 750 cfs
constant
(normal), 650
cfs (drought) | | | | | | 750 cfs
constant
(normal), 650
cfs (drought) | % of time flow
between 1000
and 1250 cfs for
recreation
(National Park
Service) | | | | <u>Figure</u> | | | | | | | Whitesburg | Flow | minimum
750 cfs, daily
average 1000
cfs, 7-Day | average 1000
cfs, 7-Day | cfs, 7-Day | minimum | | Instantaneous
minimum
750 cfs, daily
average 1000
cfs, 7-Day
average 1350
cfs | | minimum
750 cfs, daily
average 1000
cfs, 7-Day | minimum
750 cfs, daily
average 1000
cfs, 7-Day | minimum
750 cfs, daily
average 1000
cfs, 7-Day | | Instantaneous
minimum
750 cfs, daily
average 1000
cfs, 7-Day
average 1350
cfs | | | | | | | | | | West Point | Level | April-Sept
635, 632.5 at
all other times | 632.5 at all | April-Sept 635,
632.5 at all
other times | April-Sept 635,
632.5 at all
other times | | April-Sept
635, 632.5 at
all other times | | | April-Sept
635, 632.5 at
all other times | | April-Sept 635,
632.5 at all other
times | April-Sept 635,
632.5 at all
other times | | | | | | | | | ø. | West Point Gage | Flow | | | | | | | | | | | Meet flow
guidelines in
FWS PAL Letter | | | | | | | | | | ower Chattahoochee | Columbus | Flow | minimum
800 cfs, daily
average 1350
cfs, 7-Day | minimum
800 cfs, daily
average 1350
cfs, 7-Day | cfs, 7-Day | Instantaneous
minimum
800 cfs, daily
average 1350
cfs, 7-Day
average 1850
cfs | | Instantaneous
minimum
800 cfs, daily
average 1350
cfs, 7-Day
average 1850
cfs | | Instantaneous
minimum
800 cfs, daily
average 1350
cfs, 7-Day
average 1850
cfs | minimum
800 cfs, daily
average 1350
cfs, 7-Day | minimum
800 cfs, daily
average 1350
cfs, 7-Day | Instantaneous
minimum
800 cfs, daily
average 1350
cfs, 7-Day
average 1850
cfs | Instantaneous
minimum
800 cfs, daily
average 1350
cfs, 7-Day
average 1850
cfs | | | | | | | | | Middle & Lo | W.F. George | Level | April-Sept
190, 187.5 at
all other times | 187.5 at all | April-Sept 190,
187.5 at all
other times | April-Sept 190,
187.5 at all
other times | | April-Sept
190, 187.5 at
all other times | | April-Sept 190,
187.5 at all
other times | April-Sept
190, 187.5 at
all other times | | April-Sept 190,
187.5 at all other
times | April-Sept 190,
187.5 at all
other times | | | <u>Figure</u> | | | | | | 2 | W.F. George | Flow | % of Time 9 ft
Navigation is
Supported | | | | | | | | | | Meet flow
guidelines in
FWS PAL Letter | | | | | | | | | | | Andrews | Level | % of Time 9 ft
Navigation is
Supported | | | | | | | | | | | | | | | | | | | ## **Performance Metrics Identification Summary** ## **ACF Stakeholders** Last Updated : August 13, 2012 | Caucus | Node / Gage | | Daily average | Daily average | Mate
Daily average | Daily average | r Supply Farm | Daily average | Sea | Daily average | onoriic prent
Developresti
Developresti | ic & Cultural | Agriculture | Jupou figure | Notes | |--------|-------------|-------|--|---|---|---|--|--|-----|--|--|--|---|---|---|--|-------------|--|--| | | Columbia | Flow | 2000 cfs, 7-
Day average
2000 cfs | | 2000 cfs, 7-Day
average 2000
cfs | | | 2000 cfs, 7-
Day average
2000 cfs | | 2000 cfs, 7-Day
average 2000
cfs | 2000 cfs, 7-
Day average
2000 cfs | 2000 cfs, 7-Day
average 2000
cfs | 2000 cfs, 7-Day
average 2000
cfs | 2000 cfs, 7-Day
average 2000
cfs | | | | | | | | Woodruff | Level | April-Sept
77.5, 76.5 at
all other times | | April-Sept 77.5,
76.5 at all other
times | | | April-Sept
77.5, 76.5 at
all other times | | April-Sept
77.5,
76.5 at all other
times | | 76.5 at all other | April-Sept 77.5,
76.5 at all other
times | | | | | Desired flow contributions (Middle Cha | oution 50% from Chattahoochee and Flintahoochee) | | | Griffin | Flow | N/A | Informational Need: Desire to incorporate Lake Horton, Kedron, Peachtree in model | Informational
Need: % of
time flow >
wasteload
allocation flow | % of time flow < Lake Horton or Griffin permitted withdrawal levels | No specific
numeric
criteria
identified | % of time
above
wasteload
allocation flow | N/A | N/A | N/A | Linked to
Water Supply &
Water Quality | 12" flow depth during Feb 15- Jun 15 spawining, six- inch flow depth for shoal bass passage at other times | Linked to
Water Supply &
Water Quality | Linked to
Recreation | Linked to
Water
Supply &
Water
Quality | | | | | | Carsonville | Flow | NI/A | average daily flow | % of time flow > Unimpaired monthly historic 7Q10 average daily flow and/or 100 cfs | | Informational Need: % of time flow <permitted (gordon="" ag="" carsonviile="" near="" rogers)<="" td="" withdrawals=""><td>% of time
above
wasteload
allocation flow</td><td>N/A</td><td>N/A</td><td>N/A</td><td>Linked to
Water Supply &
Water Quality</td><td>inch flow depth
for shoal bass
passage at other
times</td><td>Linked to Water
Supply, Water
Quality, and
Recreation</td><td>Linked to
Recreation</td><td>Linked to
Water
Supply &
Water
Quality</td><td></td><td>Demonstrate flow v</td><td>ariability and low flow duration at node.</td></permitted> | % of time
above
wasteload
allocation flow | N/A | N/A | N/A | Linked to
Water Supply &
Water Quality | inch flow depth
for shoal bass
passage at other
times | Linked to Water
Supply, Water
Quality, and
Recreation | Linked to
Recreation | Linked to
Water
Supply &
Water
Quality | | Demonstrate flow v | ariability and low flow duration at node. | | | Montezuma | Flow | N/A | Informational
Need: Gordon
Rogers to
research flow | Informational Need: % of time flow > Weyheuser wasteload allocation flow | % of time flow < Weyerhauser permitted withdrawal | Informational | % of time
above
wasteload
allocation flow | N/A | N/A | N/A | Linked to
Water Supply &
Water Quality | 12" flow depth
during Feb 15-
Jun 15
spawining, six-
inch flow depth
for shoal bass
passage at other
times | Linked to Water
Supply, Water
Quality,
Recreation, and
Farm Agriculture | Linked to
Recreation | Linked to
Water
Supply &
Water
Quality | | | | | Flin | Albany | Flow | N/A | Informational Need: Gordon Rogers to research flow to provide Lake Blackshear and Lake Chehaw levels for recreation | Informational
Need: % of
time flow >
wasteload
allocation flow | No specific
numeric
criteria
identified | No specific
numeric
criteria
identified | % of time
above
wasteload
allocation flow | N/A | Information
Need : Check
FERC Permit
for Lake
Blackshear/Lak
e Chehaw | N/A | Linked to
Water Supply &
Water Quality | 12" flow depth
during Feb 15-
Jun 15
spawining, six-
inch flow depth
for shoal bass
passage at other
times | Linked to
Water Supply &
Water Quality | Linked to
Recreation | Linked to
Water
Supply &
Water
Quality | | | rawals accounted for in model as a
rawal based on USGS
ce water impact. | | | Newton | Flow | Linked to level
in Woodruff | Informational
need for shoal
passage | Informational
Need: % of
time flow >
wasteload
allocation flow | No specific
numeric
criteria
identified | No specific
numeric
criteria
identified | % of time
above
wasteload
allocation flow | N/A | N/A | Information
Need : Check
Plant Mitchell
needs | Linked to
Water Supply &
Water Quality | passage at other times | Linked to
Water Supply &
Water Quality | Linked to
Recreation | Linked to
Water
Supply &
Water
Quality | | surface water withd
Groundwater/Surfa
Informational need
from Radium Spring | rawals accounted for in model as a rawal based on USGS ce water impact. ************************************ | | | Bainbridge | Flow | Linked to level | % of time >900 cfs weekly average daily flow | Informational
Need: % of
time flow >
wasteload
allocation flow | No specific
numeric
criteria
identified | No specific
numeric
criteria
identified | % of time
above
wasteload
allocation flow | N/A | N/A | N/A | Linked to
Water Supply &
Water Quality | 12" flow depth
during Feb 15-
Jun 15
spawining, six-
inch flow depth
for shoal bass
passage at other
times | Linked to
Water Supply &
Water Quality | Linked to
Recreation | Linked to
Water
Supply &
Water
Quality | | | rawals accounted for in model as a
rawal based on USGS
ce water impact. | ## **Performance Metrics Identification Summary** ### **ACF Stakeholders** Last Updated : August 13, 2012 | Caucus | Node / Gage | Metric Manigation Ref | creation water duality wa | Ref Supply Farm Agriculture Industr | ry & turing food Industry Hydro Powe | the trad Power Local Cove threat Enviro | prestration Business and prestration of Co | Jrban Agriculture | Durput Figure Notes | |---------|---------------|---|---------------------------|-------------------------------------|--------------------------------------|---|--|-------------------|--| | cola | Chattahoochee | % of Time 9 ft Navigation is Supported | | | | Meet flow
guidelines in
FWS PAL Lette | r | | Desired flow contribution 50% from Chattahoochee and Flint basins (Middle Chattahoochee) | | palachi | Blountstown | % of Time 9 ft Flow Navigation is Supported | | | | IFLLA Seasona
Water Flow
(Atkins) | | | | | ∢ | Sumatra | % of Time 9 ft Flow Navigation is Supported | | | | IFLLA Seasona
Water Flow
(Atkins) | | | | Legend Evaluation using Model Output Additional information needed Revision to constraint as stated needed #### **Model Operational Sequence** - 1 Meet all numeric constraints, operational rules, withdrawals, permit requirements - 2 Meet all operational rules, withdrawals, permit requirements - 3 Meet withdrawals and permit requirements - 4 Meet permit requirements - 5 Permit requirements not met ## Middle/Lower Chattahoochee Caucus Meeting: July 19, 2012 – Performance Metrics for the SWMP/IFA A Middle/Lower Chattahoochee Caucus Meeting was held on July 19, 2012, at the offices of Lagrange Troup Country Chamber of Commerce in Lagrange, Georgia. Those in attendance included the following: | Members Attending ■ 0 | Carole Rutland | |--------------------------|-------------------------------------| | ■ Jim Phillips | Roger Martin | | ■ Billy Turner | Mitch Reid | | ■ Mike Criddle | Greg Elmore | | ■ Paige Estes | Pam Dohney (by phone) | | ■ Billy Mayes <u>Cor</u> | onsultants: | | ■ James Emery | Kristin Rowles | | ■ Brad Moore | Steve Simpson, Black & Veatch (B&V) | | ■ Billy Houston | Robert Osborne, Black & Veatch | In addition to this summary, the meeting agenda and the revised Performance Criteria Identification Summary are attached. #### **Welcome & Introductions** Jim Phillips, caucus chair, welcomed everyone to the meeting and introduced Kristin Rowles, who is moderating the Sustainable Water Management Plan (SWMP)/Instream Flow Analysis (IFA) process for ACFS. Kristin thanked everyone for giving up their afternoons for this important meeting, and she asked everyone to introduce themselves. After introductions, Kristin said that this would be a learning and input gathering meeting on performance metrics. She noted that it is a first step in the performance metrics development process. Later discussion will support consensus building and the incorporation of environmental flows information in to the performance metrics (when that work is completed by Atkins in October). Kristin presented the meeting objectives as follows: - Learn about performance metrics and their use in the SWMP/IFA process - Discuss the performance metrics table fill in blanks where we can and make needed modifications - Identify information needs - Evaluate if the table entries are representative of interests in the caucus and ACFS Jim Phillips noted that Dick Timmerberg, Steve Davis, and Colin Martin were not able to join this meeting today. Kristin asked the group to think about what interests might not be represented in the discussion in order to support additional input gathering through follow-up calls with members and interest groups. ## **Presentation on Performance Metrics & Review of existing Performance Metrics** Robert Osborne gave a brief overview of the Approach to Metric Development Technical memorandum, which was distributed to the caucus members in advance of the meeting. He noted that the latest revision was submitted June 28th. This version addresses previous concerns and comments from the ACFS Technical Oversight and Coordination Work Group (TOCWG) members. Next Robert noted the overall schedule for this work. He said that Sub-basin caucus meetings on metric development are to be held in July and August. He noted Black & Veatch will submit a revised Task 2 Performance Metric memorandum on September 21, 2012. This will included a new section that details the results of the caucus meetings. He reminded the members that this meeting was not the last chance to modify the performance metrics. Robert said Atkins will submit a final environmental inundation and flows deliverable to the TOCWG and caucuses for review on October 12, 2012.
Afterwards, additional Sub-basin caucus meetings will be held beginning October 15th to review Atkins final environmental flows deliverable. This will include discussions on how environmental flows will be integrated into the SWMP modeling. The overall conclusion of this task is targeted for December, when the Governing Board will consider approval of the Task 2 memorandum from B&V, including the proposed list of performance metrics for use in SWMP modeling. Kristin reminded the caucus members that for the performance indicators, the decision in December by the Governing Board (GB) would be a consensus decision regarding whether the GB members felt that all interests were represented in the list of performance metrics. She noted that it would not necessarily mean consensus agreement on the values of the performance metrics. Consensus development related to tradeoffs among performance metrics would come later when model results could inform the discussions. Members did not have questions or concerns about this approach. Next, Steve Simpson explained the Performance Criteria Identification Summary which was included in the Performance Metrics Memorandum. A larger 11X17 version was passed out to members. He noted the summary was broken out by caucus, nodes, and stakeholder interest. He says this summary will be a primary communication point between the modelers and the stakeholders. Next, Steve Simpson explained that the basis for most of the metrics already included on the summary was the work of the ACFS Data Needs and Sustainability Work Group in 2010. Steve noted members needed to make sure the numbers still are appropriate. Steve said not every box is filled out and not every box has to have a metric. He said that for blank boxes, the group may choose to fill it in, leave it blank, or state that there no numeric criteria have been established. Kristin asked Steve to distinguish between constraints and performance criteria. Steve explained performance criteria are a measure at a specific location and used to evaluate model output. On the other hand, constrains are inputs to the model which set a desired physical condition at a location. Jim Phillips asked about grey shaded cells on the summary. Steve referred the members to the legend at the bottom of the table and explained that grey meant it was a performance criteria, to be evaluated using model output Next the committee discussed each node in the Performance Criteria Identification Summary. Edits to the summary are included in the revised handout attached to the meeting summary. Main discussion points by interest are summarized for each node below. Refer to the attached revised Performance Criteria Identification Summary for further reference. #### WHITESBURG NODE, FLOW #### **Navigation** Members felt that navigation was not applicable at this node. Noted N/A in the summary. #### Recreation Members suggested replacing the contents of this block with that from the Environment & Conservation block. They requested more information about National Park Service reference. #### **Water Quality** Members felt the metric was still appropriate. #### **Water Supply** Members felt the metric was still appropriate. #### **Farm Agriculture** Members agreed that this block should be "no numeric criteria identified". #### **Industry & Manufacturing** Members were unsure whether to edit this metric, because there was no information to support edits. Members agreed to defer for more information #### **Seafood Industry** Members felt that seafood metric was not applicable. Noted N/A in block. #### **Hydro Power** Billy Mayes stated concern that the model did not take into account efficiency of individual turbines. Kristin noted there may a need for a follow-up discussion with this interest group metric. #### **Thermal Power** Members discussed the need to review the existing metric with George Martin of Georgia Power. Members agreed to defer for more information #### **Local government** Members felt that local government metric was not applicable. Noted N/A in block. #### **Environment & Conservation** Members agreed to defer for more information pending the completion of the environmental flows work. #### **Business & Economic Development** Members felt this metric should match the thermal power metric. #### **Historic & Cultural** Members indicated that this should be "no numeric criteria identified". #### **Urban Agricultural** Members indicated that this should be "no numeric criteria identified". #### **WEST POINT NODE, LEVEL** #### **Navigation** Noted N/A in block. #### Recreation Members felt this metric was still appropriate. #### **Water Quality** Members felt this metric was still appropriate. #### **Water Supply** Members felt this metric was still appropriate. #### **Farm Agriculture** Members agreed that this block should be "no numeric criteria identified". #### **Industry & Manufacturing** Members felt this metric was still appropriate. #### **Seafood Industry** Members said that this interest was not applicable at this node. Noted N/A in block. #### **Hydro Power** Members felt this metric was still relevant. #### **Thermal Power** Members felt that thermal power was not applicable. Noted N/A in block. #### **Local government** Members felt that this metric was not applicable. Noted N/A in block. #### **Environment & Conservation** Members felt this metric was still relevant. #### **Business & Economic Development** Members felt this metric was still appropriate. #### **Historic & Cultural** Members indicated that this should be "no numeric criteria identified". #### **Urban Agricultural** Members indicated that this should be "no numeric criteria identified". #### **WEST POINT GAGE, FLOW** At this node, flow applies only to environment and conservation. The metric listed is based on the USFWS Planning Aid Letters. Kristin will provide the letters for member reference. #### **COLUMBUS, FLOW** #### **Navigation** Members felt that navigation was not applicable. Noted N/A in summary. #### Recreation Members felt this metric was still relevant. Billy Turner also noted that the new whitewater course on the Chattahoochee. He noted a reference to this was needed. #### **Water Quality** Members felt this metric was still relevant. #### **Water Supply** Members felt this metric was still relevant. #### **Farm Agriculture** Members agreed that this block should be "no numeric criteria identified". #### **Industry & Manufacturing** Members felt this metric was still relevant. Pam Dohney, Mead Westvaco concurred. #### **Seafood Industry** Members said that this interest was not applicable at this node. Noted N/A in block. #### **Hydro Power** Members agreed to defer for more information. Kristin noted there may a need for a follow-up discussion with this interest group metric. #### **Thermal Power** Members felt this metric was still relevant and addressed needs for the thermal power plant at Oliver. #### **Local government** Members felt this metric was still relevant. #### **Environment & Conservation** Members felt that the listed metric was not relevant to environment and conservation. Members agreed to defer for more information pending the completion of the environmental flows work. #### **Business & Economic Development** Members felt this metric was still relevant. #### **Historic & Cultural** Members indicated that this should be "no numeric criteria identified". #### **Urban Agricultural** Members indicated that this should be "no numeric criteria identified". #### W.F. GEORGE, LEVEL #### **Navigation** Members felt that the listed criteria was not needed for navigation because the channel is deep in the lake. However, the need for dredging at Bully Creek was noted. It was suggested that the metric could be 184 feet. #### Recreation Members felt this metric was appropriate. #### **Water Quality** Members felt that a water quality metric was not applicable. Noted N/A in block. #### **Water Supply** Members felt that a water supply metric was not applicable. Noted N/A in block. #### **Farm Agriculture** Members agreed that this block should be "no numeric criteria identified". #### **Industry & Manufacturing** Members changed this metric to 184.5 feet after discussion with Pam Dohney. #### Seafood Industry Members said that this interest was not applicable at this node. Noted N/A in block. #### **Hydro Power** Members agreed to defer for more information. Kristin noted there may a need for a follow-up discussion with this interest group metric. #### **Thermal Power** Discussed the need to review the existing metric with George Martin, Georgia Power. #### **Local government** Members felt that this metric was not applicable for this interest. Noted N/A in block. #### **Environment & Conservation** Members felt this metric was still appropriate. #### **Business & Economic Development** Members felt this metric was still appropriate. #### **Historic & Cultural** Members indicated that this should be "no numeric criteria identified". #### **Urban Agricultural** Members indicated that this should be "no numeric criteria identified". #### W.F. GEORGE, FLOW #### **Navigation** Members felt that navigation was not applicable. Noted N/A in block. #### Recreation No Change. #### **Water Quality** No Change. #### **Water Supply** No Change. #### Farm Agriculture Members agreed that this block should be "no numeric criteria identified". #### **Industry & Manufacturing** Discussion about 1850 cfs 7 day average as a metric. Members needed to check with Army Corps of Engineers and MeadWestVaco. #### **Seafood Industry** Members felt that a seafood metric was not applicable. Noted N/A in block. #### **Hydro Power** Discussed the need to review the existing metric with George Martin, Georgia Power. #### **Thermal Power** No change. #### **Local government** No Change. #### **Environment & Conservation** Kristin to provide FWS PAL reference as a meeting follow-up. ####
Business & Economic Development No Change #### **Historic & Cultural** Members agreed that this block should be "no numeric criteria identified". #### **Urban Agricultural** Members agreed that this block should be "no numeric criteria identified". . #### **ANDREWS, LEVEL** #### **Navigation** Billy Houston was to investigate navigation requirements for the group. There was some discussion about a new hydro facility. #### Recreation No Change. #### **Water Quality** No Change. #### **Water Supply** No Change. #### **Farm Agriculture** Members agreed that this block should be "no numeric criteria identified". #### **Industry & Manufacturing** No Change. #### **Seafood Industry** No Change. #### **Hydro Power** No Change. #### **Thermal Power** No Change. #### **Local government** No Change. #### **Environment & Conservation** No Change. #### **Business & Economic Development** No Change. #### **Historic & Cultural** Members agreed that this block should be "no numeric criteria identified". #### **Urban Agricultural** Members agreed that this block should be "no numeric criteria identified". #### **COLUMBIA, FLOW** #### **Navigation** Members felt that navigation was not applicable. Noted N/A in block. #### Recreation Members felt this metric was still appropriate. #### **Water Quality** Members felt this metric was still appropriate. #### **Water Supply** Members felt that water supply metric was not applicable. Noted N/A in block. #### **Farm Agriculture** Members agreed that this block should be "no numeric criteria identified". #### **Industry & Manufacturing** Members felt this metric was still appropriate. There was discussion regarding whether this was protective of Georgia Pacific. #### **Seafood Industry** Members felt that seafood was not applicable at this node. Noted N/A in block. #### **Hydro Power** Members felt this metric was still appropriate. #### **Thermal Power** Members felt this metric was still appropriate. #### **Local government** Members felt this metric was still appropriate. #### **Environment & Conservation** Members felt that this existing metric was not applicable for this interest. Noted N/A. #### **Business & Economic Development** Members felt this metric was still appropriate. #### **Historic & Cultural** Members indicated that this should be "no numeric criteria identified". #### **Urban Agricultural** Members indicated that this should be "no numeric criteria identified". #### **WOODRUFF, LEVEL** NOTE: Generally members felt like they would like to discuss these performance metrics further after the Apalachicola Caucus provides input. It was noted that the Lake Seminole Homeowners group is associated with the Apalachicola Caucus, and they would have input to this node. Also, there was a discussion of including a metric to indicate the relative contributions of flow at Woodruff from the Flint Basin and Chattahoochee Basins. The desire was expressed by some members that RIOP requirements be met 50% by each basin. The group discussed the design of such a metric with respect to timing and climatic conditions. The caucus would like for model output to include reporting on a metric of this type. #### **Navigation** Members felt this metric was still appropriate. #### Recreation Members felt this metric was still appropriate. #### **Water Quality** Members felt this metric was still appropriate. #### **Water Supply** Members felt this metric was still appropriate. #### **Farm Agriculture** Members agreed that this block should be "no numeric criteria identified". #### **Industry & Manufacturing** Members felt this metric was still appropriate. #### **Seafood Industry** Members felt that seafood was not applicable. This was marked as N/A. #### **Hydro Power** Members felt this metric was still appropriate. #### **Thermal Power** Members felt this metric was still appropriate. #### **Local government** Members felt this metric was still appropriate. #### **Environment & Conservation** Members felt that this existing metric was not applicable. Noted N/A in block. #### **Business & Economic Development** Members felt this metric was still appropriate. #### **Historic & Cultural** Members indicated that this should be "no numeric criteria identified". #### **Urban Agricultural** Members indicated that this should be "no numeric criteria identified". ## ADDITIONAL NOTES FROM DISCUSSION OF PERFORMANCE CRITERIA IDENTIFICATION SUMMARY The following summarizes additional areas covered in discussion of the performance criteria identification summary by the caucus: - The caucus is interested in learning whether the SWMP model can consider hydro power efficiencies. They suggested consulting Mark Crisp for additional information. - For the Georgia Power dams between West Point and Columbus, it was noted that there are no numeric criteria identified except that inflow =outflow. - It was suggested that George Martin of Georgia Power be consulted to determine whether a node is needed for Georgia Power hydro projects relative to their ability to meet their FERC license requirements. - The primary performance metric for commercial navigation is the % of time that a 9' channel is available at the Chattahoochee gage. - Recent water demand data from the USACOE (June 2012) indicates greater than 100% returns in many months. More information is needed to interpret this data, particularly if it will be used in the SWMP model. Kristin noted that the B&V report on water demands would be available next week. #### **DISCUSSION OF NEXT STEPS AND WRAP-UP** Kristin detailed the next steps generated from this meeting. These steps included the following: - Kristin will organize a smaller group conference call to discuss the hydropower metrics. - Billy Houston will investigate to find the water level at Andrews Dam which would support navigation - Kristin will distribute the USFWS Planning Assistance Letter (PAL) to members for their reference. - Kristin will distribute the National Park Service report to members for their reference. - Middle/Lower Chattahoochee Caucus will discuss these metrics further after completion of the IFA and after Apalachicola Caucus provides its input, particularly on Woodruff Node. Fall caucus meetings are being planned. There were no further questions or discussion items, and the meeting was adjourned. Working together to share a common resource. # ACF Stakeholders <u>Middle Chattahoochee Caucus</u> <u>Meeting on Performance Metrics</u> July 19, 2012 1:00PM to 5:00PM Eastern LaGrange Troup Country Chamber of Commerce 111 Bull Street, LaGrange, GA 30240 #### DRAFT AGENDA <u>Meeting Objective</u>: To learn about, review, and if necessary modify and amend existing list of performance indicators. | Agenda Topics | Meeting Materials | |--|---| | Welcome & Introductions (Kristin
Rowles, 20 minutes) | Meeting Agenda | | 2. Presentation on Performance Metrics: What they are, how they will be used, approach to development, schedule for incorporating environmental flows information (Black and Veatch, 50 minutes) | Performance Metrics Technical
Memorandum_062812 | | 3. Review of existing list of performance metrics: What is missing, what should be changed (Kristin Rowles, 50 minutes) | Performance Metrics Technical
Memorandum_062812: Pages 8-9
(see page 6 for link to 11 x 17 version) | | BREAK (| 15 minutes) | | 4. Discussion: Does this list represent the interests of my caucus? (Kristin Rowles, 45 minutes) | | | 5. Discussion of next steps: Information needs, follow-up steps (Kristin Rowles and Black and Veatch, 45 minutes) | | | 6. Wrap-Up and Adjournment (15 minutes) | | ### **ACF Stakeholders** Last Updated : April 30, 2012 | Caucus | Node / Gage | | Metric Me | 460 | ation | Juality | Supply Fam A | Siculture Industry | acturing 582 | good Industry | Power The train | Power Tocal G | Ove fringerit Environme | nt of Business | Social Property Prope | Cultural Urbas | , Agriculture | Notes Notes | |------------------------------|-----------------|-------|-------------------------------|--|---|--|-----------------------------------|--|--------------|---|---|---|---|---
--|--------------------------------------|---------------|-----------------------| | | Lanier | Level | | Variable average level, see graph Lake Lanier | | | | | | | | average level,
see graph Lake
Lanier | | | | | <u>Figure</u> | | | | Buford Gage | Flow | | Monthly variable average daily flow, see graph Buford | | Monthly variable
average daily
flow, see graph
Buford | | | | | | | | | | | | | | tahoochee | Norcross | Flow | | | | | | | | | | | Meet flow
guidelines in FWS
PAL Letter
(Qualitative) | | | | | | | Upper Cha | Morgan Falls | Flow | | Storage
adjustment is -250
cfs on weekends
and +100 cfs on
weekdays | Monthly variable
average daily
flow, see graph
Morgan Falls | Monthly variable
average daily
flow, see graph
Morgan Falls | | | | Storage
adjustment is -250
cfs on weekends
and +100 cfs on
weekdays | | Monthly
variable
average daily
flow, see graph
Morgan Falls | | | | | | | | | Peachtree Creek | Flow | N/A | | 750 cfs constant
(normal), 650 cfs
(drought) | 750 cfs constant
(normal), 650 cfs
(drought) | | | | | | 750 cfs
constant
(normal), 650
cfs (drought) | % of time flow
between 1000 and
1250 cfs for
recreation (National
Park Service) | | | | <u>Figure</u> | | | Middle & Lower Chattahoochee | Whitesburg | Flow | N/A | on 4 ft depth
(Deferred for More | Instantaneous
minimum
750 cfs,minimum
daily average
1000 cfs,
minimum 7-Day
average 1350 cfs | daily average
1000 cfs,
minimum 7-Day | | Instantaneous minimum 750 cfs, daily average 1000 cfs, 7- Day average 1350 cfs (Deferred for More Information) | N/A | Instantaneous minimum 750 cfs, daily average 1000 cfs, 7-Day average 1350 cfs (Deferred for More Information) | Instantaneous minimum 750 cfs, daily average 1000 cfs, 7-Day average 1350 cfs (Deferred for More Information) | N/A | % of time flow >2200 cfs for recreation based on 4 ft depth (Deferred for More Information from NPS) | | No Numeric
Criteria
Identified | No Numeric
Criteria
Identified | | | | | West Point | Level | N/A | April-Sept 635,
632.5 at all other
times | April-Sept 635,
632.5 at all other
times | | No Numeric
Criteria Identified | April-Sept 635,
632.5 at all other
times | N/A | April-Sept 635,
632.5 at all other
times | N/A | N/A | April-Sept 635,
632.5 at all other
times | April-Sept 635,
632.5 at all
other times | No Numeric
Criteria
Identified | No Numeric
Criteria
Identified | | 635 equals full pool. | | | West Point Gage | Flow | N/A | | | | No Numeric
Criteria Identified | | N/A | | | | Meet flow
guidelines in FWS
PAL Letter | | No Numeric
Criteria
Identified | No Numeric
Criteria
Identified | | | | | Columbus | Flow | N/A | Instantaneous
minimum
800 cfs, daily
average 1350 cfs,
7-Day average
1850 cfs | Instantaneous minimum 800 cfs, daily average 1350 cfs, 7-Day average 1850 cfs. Columbus Whitewater Park may have some future needs. | Instantaneous
minimum
800 cfs, daily
average 1350 cfs,
7-Day average
1850 cfs | No Numeric
Criteria Identified | Instantaneous
minimum
800 cfs, daily
average 1350 cfs, 7-
Day average 1850
cfs | N/A | Instantaneous minimum 800 cfs, daily average 1350 cfs, 7-Day average 1850 cfs (Deferred for more information) | Instantaneous
minimum
800 cfs, daily
average 1350 cfs,
7-Day average
1850 cfs | Instantaneous
minimum
800 cfs, daily
average 1350
cfs, 7-Day
average 1850
cfs | Instantaneous
minimum
800 cfs, daily
average 1350 cfs, 7
Day average 1850
cfs (Deferred for
more information) | Instantaneous
minimum
800 cfs, daily
average 1350
cfs, 7-Day
average 1850
cfs | No Numeric
Criteria
Identified | No Numeric
Criteria
Identified | | | | | W.F. George | Level | % of time >
184 feet | April-Sept 190,
187.5 at all other
times | N/A | N/A | No Numeric
Criteria Identified | April-Sept 190,
184.5 at all other
times. Need more
information | N/A | times. Need more | April-Sept 190,
187.5 at all other
times. Need more
information. | N/A | April-Sept 190,
187.5 at all other
times | April-Sept 190,
187.5 at all
other times | No Numeric
Criteria
Identified | No Numeric
Criteria
Identified | <u>Figure</u> | | | | W.F. George | Flow | N/A | | | | No Numeric
Criteria Identified | More information | N/A | Need more information. | | | Meet flow
guidelines in FWS
PAL Letter | | No Numeric
Criteria
Identified | No Numeric
Criteria
Identified | | | | | Andrews | Level | More
Information
needed | | | | No Numeric
Criteria Identified | | | | | | | | No Numeric
Criteria
Identified | No Numeric
Criteria
Identified | | | | | Columbia | Flow | N/A | Daily average
2000 cfs, 7-Day
average 2000 cfs | | N/A | | Daily average 2000
cfs, 7-Day average
2000 cfs | N/A | Daily average
2000 cfs, 7-Day
average 2000 cfs | l Cis, 1-Day average | Daily average
2000 cfs, 7-Day
average 2000 | N/A | Daily average
2000 cfs, 7-
Day average
2000 cfs | No Numeric
Criteria
Identified | No Numeric
Criteria
Identified | | | | | Woodruff | Leve | April-Sept
77.5, 76.5 at
all other times | | April-Sept 77.5,
76.5 at all other
times | April-Sept 77.5,
76.5 at all other
times | No Numeric
Criteria Identified | April-Sept 77.5,
76.5 at all other
times | N/A | April-Sept 77.5,
76.5 at all other
times | April-Sept 77.5,
76.5 at all other
times | N/A | April-Sept 77.5,
76.5 at all other
times | No Numeric
Criteria
Identified | No Numeric
Criteria
Identified | Desired flow contribution 50% from Chattahoochee and Flint basins (Middle Chattahoochee) | |---------|---------------|------|--|--|--|--|-----------------------------------|--|-----|--|--|---|--|--------------------------------------|--------------------------------------|--| | Flint | Griffin | Flow | | | | | | | | | | Six-inch flow depth for fish passage | | | | | | | Carsonville | Flow | average daily | I 250 cfs annual
average daily flow,
-100 cfs 1-day
minimum | Unimpaired daily
7Q10 plus 30% | | | | | | | Six-inch flow depth for fish passage | | | | | | | Montezuma | Flow | | | | | | | | | | Six-inch flow depth for fish passage | | | <u>Figure</u> | | | | Albany | Flow | | | | | | | | | | Six-inch flow depth for fish passage | | | | | | | Newton | Flow | | | | | | | | | | Six-inch flow depth for fish passage | | | | | | | Bainbridge | Flow | | | | | | | | | | Six-inch flow depth for fish passage | | | | | | iicola | Chattahoochee | Flow | % of Time 9 ft
Navigation is
Supported | | | | | | | | | Meet flow
guidelines in FWS
PAL Letter
(Qualitative) | | | | Desired flow contribution 50% from Chattahoochee and Flint basins (Middle Chattahoochee) | | Apalach | Blountstown | Flow | % of Time 9 ft
Navigation is
Supported | | | | | | | | | IFLLA Seasonal
Water Flow (Atkins) | | | | | | | Sumatra | Flow | % of Time 9 ft
Navigation is
Supported | | | | | | | | | IFLLA Seasonal
Water Flow (Atkins) | _ | | | | Legend Evaluation using model output Additional information needed Revision to constraint as stated needed ### **Model Operational
Sequence** - 1 Meet all numeric constraints, operational rules, withdrawals, permit requirements - 2 Meet all operational rules, withdrawals, permit requirements - Meet withdrawals and permit requirements - Meet permit requirements - 5 Permit requirements not met ## Upper Chattahoochee Caucus Meeting: July 27, 2012 – Performance Metrics for the SWMP/IFA An Upper Chattahoochee Basin Caucus Meeting was held on July 27, 2012, at the offices of Cobb County-Marietta Water Authority in Marietta, Georgia. Those in attendance included the following: | <u>Attendees</u> | ■ Tim Perkins | |------------------|---------------------------------------| | ■ Stan Brinkley | ■ Kelly Randall | | ■ Paula Capece | ■ Wilton Rooks | | ■ Brad Currey | Jerri Russell | | ■ Don Dye | ■ Pat Stevens | | ■ Laura Hartt | ■ George Taylor | | ■ Steve Haubner | Consultants: | | ■ Chad Knudsen | ■ Kristin Rowles | | ■ Jim McClatchey | ■ Michael Friedlander, Black & Veatch | | ■ George McMahon | ■ Robert Osborne, Black & Veatch | | ■ Kathy Nguyen | ■ Steve Simpson, Black & Veatch | | ■ Glenn Page | | In addition to this summary, the meeting agenda, meeting sign-in sheet, list of metrics provided by Steve Haubner and Pat Stevens, and revised Performance Criteria Identification Summary are attached. #### **Welcome & Introductions** Kristin welcomed everyone, thanked them for giving up their time and participating in this important meeting, and asked everyone to introduce themselves. Pat Stevens expressed her objection to the presence of federal employee at the meeting (Paula Capece, National Park Service). Kristin said that Paula was an invited guest of Sally Bethea and Laura Hartt and that Kristin had asked the caucus chair if this would be ok. Pat Stevens said that is not consistent with ACFS policy on the involvement of government agencies. Wilton Rooks noted that he thought it was consistent with the policy of having outside resources review documents and that NPS was invited as an observer only. After introductions, Kristin said that this would be a learning and input gathering meeting on performance metrics. She noted that it is a first step in the performance metrics development process. Later discussion will support consensus building and the incorporation of environmental flows information in to the performance metrics (when that work is completed by Atkins in October). Kristin presented the meeting objectives as follows: - Learn about performance metrics and their use in the SWMP/IFA process - Discuss the performance metrics table fill in blanks where we can and make needed modifications - Identify information needs - Evaluate if the table entries are representative of interests in the caucus and ACFS Kristin explained that in this meeting, the focus would be to document the preferences of all stakeholder interest groups. In response to a question, she said that decision-making should not be needed in today's meeting because it will be focused on discussion and information gathering. Agreement on the performance metrics is not needed at this time. The criteria will be incorporated in the model development and the analysis of modeling results; revisions will occur through the process of further discussion of performance metrics in the fall and through the process of building stakeholder consensus during the iterative model runs. Kristin said that for the performance indicators, the decision in December by the Governing Board (GB) would be a consensus decision regarding whether the GB members felt that all interests were represented in the list of performance metrics. She noted that it would not necessarily mean consensus agreement on the values of the performance metrics. Consensus development related to tradeoffs among performance metrics would come later when model results could inform the discussions. # Presentation on Performance Metrics & Review of existing Performance Metrics Steve Simpson gave a brief overview of the Approach to Metric Development Technical Memorandum, which was distributed to the caucus members in advance of the meeting. He noted that the latest revision (June 28, 2012) included definitions of terms and other information for clarification as requested by ACFS Technical Oversight and Coordination Work Group (TOCWG) members. Steve explained the overall approach for metric development. He said that sub-basin caucus meetings on metric development are being held in July and August. He noted Black & Veatch will submit a revised Task 2 Performance Metric memorandum in September, 2012. This will included a new section that details the results of the caucus meetings. He reminded the members that this meeting was not the last chance to modify the performance metrics. Steve said Atkins will submit a final environmental inundation and flows deliverable to the TOCWG and caucuses for review on October 12, 2012. Afterwards, additional sub-basin caucus meetings will be held in October to review Atkins final environmental flows deliverable. This will include discussions on how environmental flows will be integrated into the SWMP modeling. The overall conclusion of this task is targeted for December, when the Governing Board will consider approval of the Task 2 memorandum from B&V, including the proposed list of performance metrics for use in SWMP modeling. Steve stressed the central focus of the performance metrics memo to be the performance criteria identification summary. A larger 11X17 version was passed out to members. He noted the summary was broken out by sub-basin caucus, nodes, and stakeholder interests. He said this summary will be a primary communication point between the modelers and the stakeholders. Steve noted the legend located at the bottom of the summary table. George McMahon asked about Figure 2, Approach to Metric Development; Steve noted in response that there is an extra "yes connector" from the Quantitative metric box that will be deleted in a future revision. Next, Steve Simpson explained that the basis for most of the metrics already included on the summary was the work from the ACFS Data Needs and Sustainability Work Group in 2010. Steve noted that the input of the members is needed to review and make sure the numbers are still appropriate. Steve explained that during the Middle and Lower Chattahoochee Caucus meeting there were some items that were noted as Not Applicable or No Specific Numeric Criteria Identified. Steve said that not every box needs to have a metric, but that the desire is to make sure that all of the stakeholder interests are represented. He said that today the group would review, modify, and add specific entries into the summary table. Laura Hartt asked about Instream Flow Assessment (IFA) and how it would be incorporated. Steve acknowledged that the assessment work is ongoing and that upon completion it would be vetted to the ACFS and ultimately incorporated into the modeling and analysis as performance metrics. This will occur after the completion of the IFA by Atkins in October. Depending on the format of the IFA results, the performance metrics based on the IFA could be either numeric criteria that support rules written into the model or evaluation criteria used for evaluation of model output under different scenarios. Steve Haubner was asked if the group was limited to one performance criteria per node per stakeholder interest. The group discussed that multiple criteria can be used. Kristin asked Steve to distinguish between constraints and performance criteria. Steve explained performance criteria are a measure at a specific location and used to evaluate model output. On the other hand, constrains are inputs to the model which set a desired physical condition at a location. Pat Stevens reiterated her strong concern and request that the term "preferences" be used in lieu of "constraints" and expressed disappointment that this is the third time she has raised this concern, yet the terminology has not yet been changed. Pat's concern is that the term constraint implies a legal requirement or statutory rule when in actuality it reflects a stakeholder preference. Pat does not think that this is not appropriate. Kelly Randall agreed and said that Pat's view is held by many stakeholders. Steve Simpson advised that revised terminology has not yet been adopted in the interest of attempting to communicate that some performance metrics are able to be expressed numerically in a way that can be included by rule in the model and other performance metrics can be evaluated based on the modeled output. Kristin said that it would be advisable to review these terms. Jim McClatchey commented there are actual "constraints", i.e., physical limits in the infrastructure within the ACF Basin. George McMahon asked what rules are explicitly in the model. George explained that a hydrologic model is based on a set of physical rules used to capture how a system functions and that constraints in the modeling sphere are a means of placing conditions upon a variable which influences certain mathematical based objective(s). Wilton Rooks agreed this may be just terminology; however, he suggested that "constraints" could be subdivided into legal and/or physical "constraints" (for example the current RIOP operation of the federal reservoirs) and "preferences". Jerri Russell noted and expressed concern that constraints will be ordered ahead of others in the modeling rules and that some constraints will mask the effects of other factors in the model. George Taylor stated that the whole point of using a term is for common understanding. Kristin Rowles noted that the questions at hand address both the terminology used and the modeling approach. Steve Simpson noted this was a good discussion. He noted ACFS-DSS has rules similar to HEC-RES-SIM to reflect the storage, outflow, ramping, and other RIOP parameters. Steve noted the operational rules order is presented below the legend on the Performance Criteria Summary. The
order shown on the summary is what is suggested, but is open for discussion and input. Jerri Russell said there may be preferable to use fewer rules and preferences in the model and rely more heavily on performance criteria to evaluate model output Steve Simpson noted this group had the ability to change the parameters. Steve Haubner asked if all of the measures in the summary table were rules and expressed a preference that the model be utilized with less "constraints" or rules to provide better information. He referred to a hand-out he distributed, "Water Supply Performance Metrics, July 26, 2012", for an example to illustrate how various parameters can be analyzed from model output without being an explicit rule within the model. Steve Simpson replied that this is exactly the type of analysis that is to be performed in many cases, specifically for those metrics shaded grey in the summary table. George McMahon asked the group how to get from performance indicators to changing the rules of the RIOP. He said the groups needs to focus on the rules and how releases are made. Jim McClatchey asked if it was possible to reduce the amount of evaporation in the model. He asked if evaporation could be a performance criteria. Steve Simpson said yes, but the best way to model this reduction would need to be discussed with Dr. Georgakakos. Pat Stevens discussed the handout distributed by Haubner. It was prepared for the meeting and offered several performance criteria to incorporate for analysis of model output. Steve Simpson said that the statistics for these performance criteria could all be generated from model output data. Steve Haubner added that the model should indentify if a point is reached where we cannot meet all of our demands and include the frequency of such shortfalls. Laura Hartt asked if the model can accept seasonal inputs. Steve Simpson indicated that it was possible, and the table currently includes some seasonal flow/level regime preferences. This was illustrated in the graphics indicating Lake Lanier level and the Buford gage flow preferences. Kristin noted the need for B&V to discuss the issues raised regarding the treatment of performance metrics in the model with Dr. Georgakakos and to propose recommendations to ACFS on how to address concerns within ACFS as to what is hard-coded into the model as a "constraint" or "preference" and alternatively what is used to evaluate model output. ### **Discussion on Summary Table** Next, the committee discussed each node in the Performance Criteria Identification Summary. Edits to the summary are included in the revised handout attached to the meeting summary. For several parameters, the 2010 input from the Data Needs and Sustainability Workgroup was reviewed. Some of the discussion points from this exchange are bulleted below. - Members felt that navigation metrics were not applicable for all nodes. - Members felt that seafood metrics were not applicable for all nodes. - Members noted that no specific numeric criteria were identified for farm agriculture. - Members suggested that industry and manufacturing metrics were linked to water supply metrics in this area. - At the Lanier node, Wilton Rooks expressed concern that the monthly average graph in the memo needed review. - The performance criteria offered in the hand-out by Haubner and Stevens were discussed and can be incorporated into the performance metrics. - Jerri Russell said that later in the process there may be a need for metrics that address equity among regions and interests. - Pat Stevens requested the detailed excel file that supports the 2010 Data Needs and Sustainability Work Group's entries to the table. - The wording of the Environment and Conservation category was discussed. Conservation in this sense refers to habitat/ecological conservation as opposed to using less water. - Laura Hartt will research and provide additional input on desired Historic & Cultural and Water Quality metrics. - For hydropower generation, George Taylor advised that four hours per day, five days per week is standard utilization for hydro facilities. George will check on metrics for hydropower, specifically for Lake Lanier (flow). - Kelly Randall will research and provide additional feedback on Buford gage flow related water quality metrics after checking with GA DNR with regard especially to the needs of the hatchery below the dam. - The Fish and Wildlife Service PAL Letter was discussed for the Norcross node. The group agreed that the minimum flow intra-annual curves make sense for analysis; however, many in the group found the table with high flow guidelines for pre-Buford Dam periods impractical and dangerous. Laura Hartt said that she will review the suggested high flow guidelines from the environmental interest group perspective. - A discussion of whether to keep the Morgan Falls node ensued. Pat Stevens noted Morgan Falls does not have much storage and provides only marginal re-regulation of flows. The group discussed deleting the Morgan Falls node from the table, pending further input from George - Martin with GA Power on thermal power metrics (Chad Knudsen to coordinate), and Laura Hartt on recreation and environment & conservation metrics at this node. - Peachtree Creek was discussed. It was agree that 750 cfs should be used as the model rule, and the metric would be the percent of time 750 cfs is achieved. ### **DISCUSSION OF NEXT STEPS AND WRAP-UP** Kristin asked if anyone could think of a stakeholder interest group or individual who could not attend the meeting but who should be reached out to gain their input. Kelly Randall suggested Gwinnett County was not present, but that he would be in contact with them regarding the discussions that had taken place. Caucus member Steve Cannon was not present and should be consulted by B&V for input on historic and cultural performance metrics in this sub-basin. Next, the caucus approved by consensus that Steve Haubner will replace Tim Perkins as an alternate for the Upper Chattahoochee Caucus on the TOCWG. Kristin thanked the group for their input and participation, and the meeting was adjourned. ### **ACTION ITEMS** - Kristin will distribute spreadsheet requested by Pat Stevens with detailed information to support the Data Needs and Sustainability Work Groups metrics. - B&V will contact Steve Cannon for input on historic and cultural performance metrics in the subbasin. - Laura Hartt will review the PAL high flows guidelines for the Norcross node from the environmental interest group perspective. - Kelly Randall will check with GA DNR regarding water quality metrics for the Buford gage. - Wilton Rooks and B&V will review the Lanier graphs in the technical memo for accuracy. - Laura Hartt will research and provide additional input on desired Historic & Cultural (she will check with the National Park Service) and Water Quality metrics. - George Taylor will check on metrics for hydropower, specifically for Lake Lanier (flow). - Chad Knudsen will consult with George Martin of GA Power on thermal power metrics at Morgan Falls node (to see if one is needed). - Laura Hartt will gather additional input on recreation and environment metrics at Morgan Falls node. - B&V will discuss the issues raised regarding the terminology and treatment of performance metrics in the model with Dr. Georgakakos and to propose recommendations to ACFS on how to address concerns within ACFS as to what is hard-coded into the model as a "constraint" or "preference" and alternatively what is used to evaluate model output. - Kristin will add Steve Haubner to the TOCWG e-mail list. ## Upper Chattahoochee Cancus Meeting July 27, 2012 | | NAME | E-MAIL | |----|-----------------|-----------------------------------| | / | Chad Knudsen | caknudse@Southernco.com | | 2 | Stephen Simpson | simpson & ebu.com | | 3 | Pat Stevens | pstevens@atlantaregional.com | | 4 | Laure Hartt | Shartt@ucriverkeeper.org | | 5 | Konstin Rowles | | | 6 | | friedlanderme by.com | | 7 | Robert Osborne | • | | | GEBRGE M MAHON | OFTEROCO MCMAHON CARCADIS-US. COM | | 9 | GUENN PAGE | gpage comwa.org | | | Tim PerKins | Tmperkins@ Forsythoo. com | | | George Taylor | george. taylor @ ope. com | | 12 | STAN BRINICLEY | SBRINKLEY@ CCMWA.ORG | | 13 | JAMES MUCHTCHEY | JNMO SAF. COM | | 14 | Kathy nguyen | Kenthy nguyen@cosscounty.org | | 15 | STEUE HAUBNER | SHAUBNER C ATLANTAREGIONAL, COM | | 16 | WILTON Books | Wilton @ rooks, us | | 17 | Paula Capece | panla_capece @nps.gov | | 18 | _ | KRANDALLEGAINESVILLE. DRG | | 19 | DON Dye | de ye @ guinesville. ORG | | 20 | Jerri Russell | jrusselle atlantaga. gov | | | Brad Curray | cgrist rocktenn. com | | | / | V | Working together to share a common resource. # ACF Stakeholders <u>Upper Chattahoochee Caucus</u> <u>Meeting on Performance Metrics</u> July 27, 2012 1:00PM to 5:00PM Eastern **Cobb County-Marietta Water Authority** ### DRAFT AGENDA <u>Meeting Objective</u>: To learn about, review, and if necessary modify and amend existing list of performance indicators. | Ag | renda Topics | Meeting Materials | | | | | | | |----|--|---|--|--|--|--|--|--| | 1. | Welcome & Introductions (Kristin Rowles, 10 minutes) | Meeting Agenda | | | | | | | | 2. | Presentation on Performance Metrics:
What they are, how they will be used,
approach to development, schedule for
incorporating environmental flows
information (Black & Veatch, 50
minutes) | Performance Metrics Technical
Memorandum_062812 | | | | | | | | 3. | Review of existing list of performance metrics: What is missing, what should be changed (Black & Veath/Kristin Rowles, 50 minutes) | Performance Metrics Technical
Memorandum_062812: Pages 8-9 (see page 6 for link to 11 x 17 version) | | | | | | | | | BREAK (1 | 5 minutes) | | | | | | | | 4. | Discussion: Does this list represent the interests of my caucus? (Kristin Rowles, 45 minutes) | | | | | | | | | 5. | Discussion of next steps: Information needs, follow-up steps (Kristin Rowles, Black & Veatch, 45 minutes) | | | | | | | | | 6. | Wrap-Up and Adjournment (15 minutes) | | | | | | | | ### **Performance Metric Identification Summary** ### ACF Stakeholders Last Updated : April 30, 2012 | Caucus | Node / Gage | Medic Mg | nide ion age | Mate Mate | a Cupited Mate | supply fair | n Agriculture Indus | ry & tring | ood Industry India | Power Trest | red Power | Overtheent Environment | ert dier pusiness | Sonic prent | the & Children | or Agriculture | Notes Notes | |---------------------|---|----------------------|--|--|--|--|--------------------------------------|-------------------|---|-------------------|--|---|---|---|---|---|---| | | ⊏anier | □e□el Not Applicable | Percent of Time anier eal is less than 1061 C Caucus Metric 10 - Percent of Weeks March through No Corps dentified ecreation | Jerri □ussell
and □aura
□artt to
research
potential
metrics □ith
□A□N□ | □C Caucus
Metrics 1-9 | No
Specific
Criteria
dentified | Metrics
□inked to
Water Supply | Not
Applicable | □eorge Taylor
to pro⊡de input | Not
Applicable | Percent of
Time □anier
□e □el is less
than 1061 | □aura □artt to research Corps □ake Management for □ass guidelines | □inked to
Water Supply
and □ecreation | □aura
□artt to
discuss
metrics□it
h NPS | Metrics
□inked to
Water
Supply | See UC Caucus Performan ce Metrics example graphs | □pper Chattahoochee □asin Caucus Meeting July 27, 2012 | | | □anier □utflo□ | Flo□ Not Applicable | No Specific
Criteria
Identified | No Specific
Criteria
Identified | Metrics linked
to Peachtree
Creek Water
Supply Metric | No
Specific
Criteria
Identified | Metrics
□inked to
Water Supply | Not
Applicable | □eorge Taylor to pro⊡de input on hours of generation or other metric ዻ hours day 5 dⅢ is historical baseline□ | Not
Applicable | Metrics ⊑inked
to Water
Supply | No Specific
Criteria īdentified | No Specific
Criteria
dentified | No
Specific
Criteria
Identified | Metrics
□inked to
Water
Supply | | Additional metric dicussed during □pper
Chattahoochee □asin Caucus Meeting July 27,
2012 | | □pper Chattahoochee | □uford □age | Flo⊡ Not Applicable | T□□ -or-
□inked to
Water Supply
and
□ydropo□er | □elly □andall to □erify □ith □A □N□ hatchery- □elease desired □ 500 cfs to keep nursery intake co□ered, □□, temp | Metrics linked
to Peachtree
Creek Water
Supply Metric | No
Specific
Criteria
dentified | Metrics
□inked to
Water Supply | Not
Applicable | Not Applicable | Not
Applicable | □inked to
Water Supply,
Water □uality,
and □ecreation | Metrics □inked to □ecreation | □inked to
Water Supply
and □ecreation | □aura □artt to discuss metrics□it h NPS | Metrics
□inked to
Water
Supply | | | | | Norcross | Flo□ Not Applicable | No Specific
Criteria
dentified | No Specific
Criteria
dentified | Metrics linked
to Peachtree
Creek Water
Supply Metric | No
Specific
Criteria
dentified | Metrics
□inked to
Water Supply | Not
Applicable | Not Applicable | Not
Applicable | □inked to
Water Supply,
Water □uality,
and □ecreation | Percent of time
flo□ meets
guidelines in
FWS PA□ □etter
□□ ualitati□□ | □inked to
Water Supply
and □ecreation | □aura □artt to discuss metrics□it h NPS | Metrics
□inked to
Water
Supply | | | | | Morgan Falls - Slated for Deletetion pending hydropower/recre ation feedback) | Flo⊡ Not Applicable | T□□ -or-
□inked to
Water Supply
and
□ydropo□er | No Specific
Criteria
dentified | No Specific
Criteria
⊡dentified | No
Specific
Criteria
Identified | Metrics
□inked to
Water Supply | Not
Applicable | No Specific
Criteria
⊡dentified | Not
Applicable | Monthly □ariable a□erage daily flo□, see graph Morgan Falls | Metrics linked to recreation | □inked to
Water Supply
and □ecreation | □aura □artt to discuss metrics□it h NPS | Metrics
□inked to
Water
Supply | | | | | Peachtree Creek | Flo⊡ Not Applicable | □ of time flo□
bet□een 1000
and 1250 cfs
for recreation
National Park
Ser⊡ce□ | 750 cfs
constant | □C □asin Caucus Metric 12 - Percent of □ays □elo□ 750 cfs | No
Specific
Criteria
dentified | Metrics
□inked to
Water Supply | Not
Applicable | Not Applicable | Not
Applicable | □inked to
Water Supply,
Water □uality,
and □ecreation | □inked to
□ecreation | □inked to
Water Supply
and □ecreation | □aura □artt to discuss metrics□it h NPS | Metrics
□inked to
Water
Supply | | □C □asin Caucus Metric 11 - Number of □ays □ith Shortages of Withdra□als □□□□□Potential modeling of different flo□ rules, changing flo□ □uantity and or seasonal flo□ differences □as discussed during □pper Chattahoochee □asin Caucus Meeting July 27, 2012 | | | | | Instantaneous | Instantaneous | Instantaneous | Instantaneous | Instantaneous | Instantaneous Instantaneous | Instantaneous | | nstantaneous | | | |---------------|-------------------|-------|-----------------|------------------|-------------------|-----------------|-----------------|---------------------------------|---|--------------------|------------------|---------------|---------------------------------------| | | | | minimum | minimum | minimum | minimum | minimum | minimum minimum | minimum | | minimum | | | | | | | 750 cfs, daily | | 750 cfs, daily | 750 cfs, daily | 750 cfs, daily | 750 cfs, daily 750 cfs, daily | 750 cfs, daily | | 750 cfs, daily | | | | | Mhitaghura | Flo□ | | | | | a⊑erage 1000 | a erage 1000 a erage 1000 | | □ of time flo□ | | | | | | Whitesburg | FIO | cfs, 7-□ay | cfs, 7-□ay | cfs, 7-□ay | cfs, 7-□av | cfs, 7-□ay | | | | | | | | | | | | a⊑erage 1350 | | | a erage 1350 | | a □ a □ a □ a □ a □ a □ a □ a □ a □ a □ | | | | | | | | | | | _ | _ | | | | | | | | | | | | cfs | cfs | cfs | cfs | cfs | cfs cfs | CTS | on 4 π depth | CTS | West Point | □e□el | | | April-Sept 635, | April-Sept 635, | April-Sept | | | April-Sept 635, | | | | | | West Follit | LCLCI | 000, 002.0 at | | 632.5 at all | 632.5 at all | 635, 632.5 at | | | 632.5 at all other | | | | | | | | all other times | other times | other times | other times | all other times | other times all other times | other times | times | other times | | | | | | | | | | | | | | M 10 = | West Point □age | Flo□ | | | | | | | | | | | | | | Troot I omit bago | 1.00 | | | | | | | | | | Figure Figure | | | d) | | | | | | | | | | ualitati | | | | | Je | | | nstantaneous | Instantaneous | nstantaneous | nstantaneous | Instantaneous | Instantaneous Instantaneous | Instantaneous | nstantaneous | nstantaneous | | | | ğ | | | minimum | minimum | minimum | minimum | minimum | | | | | | | | ĕ | | | 800 cfs, daily | | | | | | | | ā | 0-1 | FI | _ | | | | a⊑erage 1350 | a erage 1350 a erage 1350 | | | | | | | at | Columbus | Flo□ | | | | | | | | | | | | | Chattahoochee | | 1 | cfs, 7-□ay | | | | | | | | <u>.</u> | | 1 | | a⊡erage 1850 | | | a⊡erage 1850 | a erage 1850 a erage 1850 | | | | | | | Ē | | | cfs | cfs | cfs | cfs | cfs | cfs cfs | cfs | cfs | cfs | | | | o | | 1 | | | | | | | | | | | | | | M/ F = | L | April-Sept | April-Sept 190, | April-Sept 190, | April-Sept 190, | April-Sept | April-Sept 190, April-Sept | April-Sept 190, | | April-Sept 190, | | | | <u>o</u> | W.F. □eorge | LeLei | 190, 187.5 at | 187.5 at all | 187.5 at all | 187.5 at all | 190, 187.5 at | 187.5 at all 190, 187.5 at | 187.5 at all | 187.5 at all other | 187.5 at all | <u>Figure</u> | | | pp | | | all other times | | other times | other times | all other times | other times all other times | other times | times | other times | | | | Middle | Meet flo□ | | | | | | W.F. □eorge | Flo□ | □ of Time 9 ft | | | | | | | guidelines in | | | | | | W.i . Deolge | 1 10 | Na igation is | | | | | | | FWS PA□ □etter | | | | | | | | Supported | | | | | | | ualitati | | | | | | | | □ of Time 9 ft | Andre □s □e □ | □e□el | Na igation is | | | | | | | | | | | | | | | Supported | | | | | | | | | | | | | | | □aily a erage | | | □aily a⊡erage | □aily a □erage | □aily a erage □aily a erage | | □aily a erage | □aily a erage | | | | | Calumahia | Пап | 2000 cfs, 7- | | | / 2000 cfs, 7-□ay | 2000 cfs, 7- | | | | | Columbia | Flo□ | □ay
a ⊑erage | □ay a ⊑erage | □ay a ⊑erage | □ay a ⊑erage | □ay a erage | □ay a⊡erage □ay a⊡erage | a erage 2000 | a erage 2000 | □ay a ⊑erage | | | | | | | 2000 cfs 2000 cfs | cfs | cfs | 2000 cfs | April-Sept | April-Sept | April-Sept 77.5, | April-Sept | April-Sept | April-Sept 77.5, April-Sept | April-Sept 77.5, | , April-Sept 77.5, | April-Sept 77.5, | | □esired flo□ contribution 50□ from | | | Woodruff | □e□el | 77.5, 76.5 at | | 76.5 at all other | | 77.5, 76.5 at | 76.5 at all other 77.5, 76.5 at | | | | | Chattahoochee and Flint basins Middle | | | | | | all other times | times | all other times | all other times | times all other times | | times | times | | Chattahoochee□ | | | | | | | | | | | | Si -inch flo □ | | | | | | □riffin | Flo□ | | | | | | | | depth for fish | | | | | | | 1 10 | | | | | | | | passage | | | | | | | | | | | | | | | passage | | | | | | | | 050 efe | 050 -f | | | | | | | | | | | | | | | 250 cfs annual | □nimpaired | | | | | Si⊡inch flo□ | | | | | | Carson⊡lle | Flo□ | a erage daily | | daily 7 □ 10 plus | | | | | depth for fish | | | | | | ouroun and | | | flo□, 100 cfs 1- | 30 = | | | | | passage | | | | | | | | day minimum | day minimum | 30 🗆 | | | | | passage | . | | | | | | | | | | Si⊡inch flo□ | | | | | Flint | Monte⊒uma | Flo□ | | | | | | | | depth for fish | | <u>Figure</u> | | | ш | | | | | | | | | | passage | | | | | | | 1 | | | | | | | | Si inch flo □ | | | | | | Albany | Flo□ | | | | | | | | depth for fish | | | | | | | | | | | | | | | passage | | | | | | | 1 | | | | | | | 1 | Si⊡inch flo□ | | | | | | Ne □ton | Flo□ | | | | | | | | depth for fish | | | | | | 146 - 1011 | 10 | | | | | | | | passage | | | | | | | | | | | | | | | Si⊡inch flo□ | | | | | | | ГІ | | | | | | | | | | | | | | □ainbridge | Flo□ | | | | | | | | depth for fish | | | | | | | | | | | | | | | passage | | | | | | | | _ (=: 0.5 | | | | | | | Meet flo□ | | | | | | | | □ of Time 9 ft | | | | | | | guidelines in | | | □esired flo□ contribution 50□ from | | ~ | Chattahoochee | Flo□ | Na⊡gation is | | | | | | | FWS PA□ □etter | | | | | 90 | | 1 | Supported | | | | | | | □ ualitati □e □ | | | Chattahoochee and Flint basins Middle | | palachicola | | | | | | | | | | | | | Chattahoochee□ | | 30 | | 1 | □ of Time 9 ft | | | | | | | F A Seasonal | | | | | ਬ | □lountsto□n | Flo□ | Na igation is | | | | | | | Water Flo□ | | | | | 0 | | 1 | Supported | | | | | | | [Atkins[| | | | | 7 | | | | | | | | | | - | | | • | | - | Sumatra | ☐ of Time 9 ft Na ☐gation is Supported | | | F□A Seasonal
Water Flo□
□Atkins□ | | | | |---|---------|--|----------|--|--|--|--|--| | | Legend | □ualitati⊏e metric
Additional information | n needed | | | | | | ### **Model Operational Sequence** 1 Meet all numeric constraints, operational rules, □ithdra□als, permit re□uirements □e⊡sion to constraint as stated needed - 2 Meet all operational rules, □ithdra□als, permit re□uirements - 3 Meet □ithdra□als and permit re □uirements - 4 Meet permit re □uirements - 5 Permit re □uirements not met # Water Supply Performance Metrics, July 26, 2012 | Comments/Details | | Annual Refill is Defined as Full Pool on May 1 with a 1/4 ft tolerance
(1070.75') Threshold Varies With Time of Year and Basin Operations | | Weeks in WCP/RIOP Zone 4 (red) and Zone 3 (orange) | | Lanier should be taken down gradually | Two or More Consecutive Months of Rapid Stage Reductions (>1.5 ft/month) in Lake Lanier; 1.5 ft/month selected based on historical data (2003-2011) | | Number of Days between Yearly Minimum Stage and Full Pool | Recreation Impact Levels 1 (yellow), 2 (orange), 3 (red) are shown | It is important to verify that demands are being met in simulations | This metric uses the daily minimum flow requirement for each alternative (not necessarily 750 cfs) | |------------------|--|--|---|--|---|---|---|---|---|--|---|--| | Format | bar graph | bar graph | 365 day
graph | stacked bar
graph | frequency | frequency
distribution | bar graph | bar graph | frequency
distribution | stacked bar
graph | bar graph | bar graph | | Title | Percent of Years Lake Lanier is at Full Pool (1071')
by May 1 | Percent of Weeks Above 90% Refill Probability
Threshold | Minimum Lake Lanier Stage Each Day of the Year | Percent of Weeks with Critical Levels in Lake Lanier | Lake Lanier Stages | Monthly Rate of Decrease in Lake Lanier | Percent of Years with Perceived Critical Conditions | Percent of Years Reservoir is at Full Pool on May 1:
Lanier, West Point, W.F. George | | Percent of Weeks with Recreation Impact, March 1 to November 30: Lanier, West Point, W.F. George | Number of Days with Shortages to the Metro
Atlanta Region | Percent of Days in Violation of the Peachtree Creek
Minimum Flow Requirement | | # | 1 | 2 | m | 4 | 2 | G | 7 | ∞ | 6 | 10 | 11 | 12 | | Purpose | le Lake | Assese
Occurre
Desirabl
ribno | sasessing
surrence of
scceptable
sconditions | DO
InU | Assessing
Overall Lake
Conditions | | gnissessA
bward | | a Brita
Tor Bro | | gning
Supply
st are
let | Water
Need | Figure 1. Water supply performance metric #1 Figure 2. Water supply performance metric #2. See last page for details. Figure 3. Water supply performance metric #3 Figure 4. Water supply performance metric #4 Figure 5. Water supply performance metric #5 Figure 6. Water supply performance metric #6 Figure 7. Water supply performance metric #7 Figure 8. Water supply performance metric #8 Figure 9. Water supply performance metric #9 Figure 10. Water supply performance metric #10 Figure 11. Water supply performance metric #11 Figure 12. Water supply performance metric #12 ### Performance Metric #2 details A simulation model of the ACF basin under RIOP operations was used to determine the 90% refill probability stage on the first day of each month. This was done by determining the initial conditions stage in Lake Lanier that results in 90% refill under historical hydrology (1940-2008). The resulting curve is shown below. Figure 13. 90% refill probability threshold for Lake Lanier under RIOP operations, used in performance metric #2 If alternatives developed by the stakeholder group result in large changes to the operations of Lake Lanier, this curve should be recreated in a simulation model of the operations in that alternative.